Review

Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines

  • Jianqiang Chen ,
  • Gangguo Zhu ,
  • Jie Wu
Expand
  • a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004
    b School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000
    c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2023-11-17

  Online published: 2023-12-21

Supported by

National Natural Science Foundation of China(22201201); Natural Science Foundation of Zhejiang Province(LY23B020001); Zhejiang Provincial Ten Thousand Talent Program(2020R52021)

Abstract

Aziridines are among the most important building blocks in modern organic synthesis due to their proclivity to ring-opening with a wide range of nucleophiles. This small nitrogen-containing ring system is a highly strained molecule, and C—N fragmentation allows it to be used as the precursor for various scaffolds (including amino alcohols, amino ethers, and diamines) that are not readily accessible through conventional methods. The driving force for this C—N activation is the release of ring strain. In conclusion, significant advances in this filed have been realized with various of nucleophiles. On the other hand, the use of transition metal for C—N activation is one of the most significant methods for the construction of complex molecules. Transition metal-catalyzed ring opening cross-coupling of aziridines have received much attention in recent years. Over the past decades, many groups have described approaches to engage aziridines as electrophiles in nickel-catalyzed cross-coupling. This paper reviews the recent advances in nickel-catalyzed ring opening cross-coupling of aziridines, focuses on the ring-opening methodology, compares the regioselective of the different aziridines, and summarizes generalities of these strategies. We split this paper into three sections consisting of construction of β-functionalized amines via Ni-catalyzed, dual photoredox/Ni-catalyzed, and Ni-catalyzed electrochemical cross-coupling of aziridines. Traditional methods for the ring-opening of aziridines include (1) nickel-catalyzed SN2 nucleophilic ring-opening, (2) nucleophilic halide ring-opening, and (3) electro-induced ring-opening.

Cite this article

Jianqiang Chen , Gangguo Zhu , Jie Wu . Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines[J]. Acta Chimica Sinica, 2024 , 82(2) : 190 -212 . DOI: 10.6023/A23110503

References

[1]
Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O’Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279.
[2]
(a) Singh, G. S.; D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080.
[2]
(b) McCoull, W.; Davis, F. A. Synthesis 2000, 1347.
[3]
(a) Hu, X. E. Tetrahedron 2004, 60, 2701.
[3]
(b) Sabir, S.; Kumar, G.; Verma, V. P.; Jat, J. L. ChemistrySelect 2018, 3, 3702.
[4]
(a) Takeda, Y.; Sameera, W. M. C.; Minakata, S. Acc. Chem. Res. 2020, 53, 1686.
[4]
(b) Du, Q.; Zhang, L.; Gao, F.; Wang, L.; Zhang, W. Chin. J. Org. Chem. 2022, 42, 3240. (in Chinese)
[4]
(杜青锋, 张璐, 高峰, 王乐, 张万斌, 有机化学, 2022, 42, 3240.)
[5]
(a) Alper, H.; Urso, F.; Smith, D. J. H. J. Am. Chem. Soc. 1983, 105, 6737.
[5]
(b) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931.
[6]
(a) Piotti, M. E.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.
[6]
(b) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem. 1999, 64, 518.
[6]
(c) Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew. Chem., Int. Ed. 2002, 41, 2781.
[7]
Takeda, Y.; Sameera, W. M. C.; Minakata, S. Acc. Chem. Res. 2020, 53, 1686.
[8]
(a) Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Acta Chim. Sinica 2019, 77, 783. (in Chinese)
[8]
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
[8]
(b) Yang, M.; Ye, B.; Chen, J.; Wu, J. Acta Chim. Sinica 2022, 80, 11. (in Chinese)
[8]
(杨民, 叶柏柏, 陈健强, 吴劼, 化学学报, 2022, 80, 11.)
[8]
(c) Hou, H.; Cheng, Y.; Chen, B.; Tung, C.; Wu, L. Chin. J. Org. Chem. 2023, 43, 1012. (in Chinese)
[8]
(侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠, 有机化学, 2023, 43, 1012.)
[8]
(d) Chen, J.; Zhu, G.; Wu, J. Acta Chim. Sinica 2023, 81, 1609. (in Chinese)
[8]
(陈健强, 朱钢国, 吴劼, 化学学报, 2023, 81, 1609.)
[8]
(e) Chen, J.-Q.; Tu, X.; Tang, Q.; Li, K.; Xu, L.; Wang, S.; Ji, M.; Li, Z.; Wu, J. Nat. Commun. 2021, 12, 5328.
[8]
(f) Ji, M.; Xu, L.; Luo, X.; Jiang, M.; Wang, S.; Chen, J.; Wu, J. Org. Chem. Front. 2021, 8, 6704.
[8]
(g) Chen, J.-Q.; Luo, X.; Chen, M.; Chen, Y.; Wu, J. Org. Lett. 2023, 25, 1978.
[9]
(a) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
[9]
(b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[9]
(c) Wang, Z.; Ma, C.; Fang, P.; Xu, H.; Mei, T. Acta Chim. Sinica 2022, 80, 1115 (in Chinese)
[9]
(王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115)
[10]
(a) Chen, J.-Q.; Liu, N.; Hu, Q.; Liu, J.; Wu, J.; Cai, Q.; Wu, J. Org. Chem. Front. 2021, 8, 5316.
[10]
(b) Chen, J.-Q.; Tu, X.; Qin, B.; Huang, S.; Zhang, J.; Wu, J. Org. Lett. 2022, 24, 642.
[10]
(c) Qin, B.; Huang, S.; Chen, J.-Q.; Xiao, W.; Wu, J. Org. Chem. Front. 2022, 9, 3521.
[10]
(d) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Green Chem. 2022, 24, 5077.
[10]
(e) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Org. Chem. Front. 2022, 9, 4328.
[10]
(f) Chen, J.-Q.; Chen, Q.; Chen, B.; Wu, J. Org. Chem. Front. 2023, 10, 2018.
[10]
(g) Chen, M.; Sun, W.; Yang, J.; Yuan, L.; Chen, J.-Q.; Wu, J. Green Chem. 2023, 25, 3857.
[11]
(a) Ananikov, V. P. ACS Catal. 2015, 5, 1964.
[11]
(b) Chen, J.; Wu, J. Chin. J. Org. Chem. 2022, 42, 921. (in Chinese)
[11]
(陈健强, 吴劼, 有机化学, 2022, 42, 921.)
[11]
(c) Ruan, L.; Dong, Z.; Chen, C.; Wu, S.; Sun, J. Chin. J. Org. Chem. 2017, 37, 2544. (in Chinese)
[11]
(阮利衡, 董振诚, 陈春欣, 吴爽, 孙京, 有机化学, 2017, 37, 2544.)
[12]
Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 2890.
[13]
Ravn, A. K.; Vilstrup, M. B. T.; Noerby, P.; Nielsen, D. U; Daasbjerg, K.; Skrydstrup, T. J. Am. Chem. Soc. 2019, 141, 11821.
[14]
Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541.
[15]
Nielsen, D. K.; Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 13605.
[16]
Jensen, K. L.; Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc. 2014, 136, 11145.
[17]
Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2015, 137, 5638.
[18]
Jensen, K. L.; Nielsen, D. U.; Jamison, T. F. Chem. Eur. J. 2015, 21, 7379.
[19]
(a) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. J. Am. Chem. Soc. 2017, 139, 5688.
[19]
(b) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. J. Am. Chem. Soc. 2018, 140, 774.
[20]
Liu, S.; Wang, S.-L.; Wan, J.; Peng, S.; Zhang, J.-R.; Ding, H.-J.; Zhang, B.; Ni, H.-L.; Cao, P.; Hu, P.; Wang, B.-Q.; Chen, B. Org. Lett. 2023, 25, 6582.
[21]
Davies, J.; Janssen-Müller, D.; Zimin, D. P.; Day, C. S.; Yanagi, T.; Elfert, J.; Martin, R. J. Am. Chem. Soc. 2021, 143, 4949.
[22]
Tang, W.; Fan, P. Org. Lett. 2023, 25, 5756.
[23]
Xu, S.; Hirano, K.; Miura, M. Org. Lett. 2021, 23, 5471.
[24]
Yu, X.-Y.; Zhou, Q.-Q.; Wang, P.-Z.; Liao, C.-M.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 421.
[25]
Steiman, T. J.; Liu, J.; Mengiste, A.; Doyle, A. G. J. Am. Chem. Soc. 2020, 142, 7598.
[26]
Xu, C.-H.; Li, J.-H.; Xiang, J.-N.; Deng, W. Org. Lett. 2021, 23, 3696.
[27]
Fan, P.; Jin, Y.; Liu, J.; Wang, R.; Wang, C. Org. Lett. 2021, 23, 7364.
[28]
Dongbang, S.; Doyle, A. G. J. Am. Chem. Soc. 2022, 144, 20067.
[29]
Mori, Y.; Hayashi, M.; Sato, R.; Tai, K.; Nagase, T. Org. Lett. 2023, 25, 5569.
[30]
Wang, Y.-Z.; Wang, Z.-H.; Eshel, I. L.; Sun, B.; Liu, D.; Gu, Y.-C.; Milo, A.; Mei, T.-S. Nat. Commun. 2023, 14, 2322.
[31]
Yang, G.; Wang, Y.; Qiu, Y. Chem. Eur. J. 2023, 29, e202300959.
[32]
Kumar, G. S.; Zhu, C.; Kancherla, R.; Shinde, P. S.; Rueping, M. ACS Catal. 2023, 13, 8813.
[33]
Hu, X.; Cheng-Sánchez, I.; Cuesta-Galisteo, S.; Nevado, C. J. Am. Chem. Soc. 2023, 145, 6270.
Outlines

/