Article

Co-based Metal-organic Framework for High-efficiency Degradation of Methylene Blue in Water by Peroxymonosulfate Activation

  • Yang Liu ,
  • Fengqin Gao ,
  • Zhanying Ma ,
  • Yinli Zhang ,
  • Wuwu Li ,
  • Lei Hou ,
  • Xiaojuan Zhang ,
  • Yaoyu Wang
Expand
  • a School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
    b College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China

Received date: 2023-10-20

  Online published: 2024-01-05

Supported by

Natural Science Foundation of Shaanxi Province(2023-JC-QN-0173); Natural Science Foundation of Shaanxi Province(2023-YBSF-595); Scientific Research Program Funded by Shaanxi Provincial Education Department(22JK0605); Key Research and Development Plan of Xianyang City(L2023-ZDYF-QYCX-030); National College Students' Innovation and Entrepreneurship Training Program(202210722013)

Abstract

In the field of water purification, the advanced oxidation process based on sulfate radical (SO4•-) has great potential applications due to its high selectivity and oxidation advantages. The development of high-performance peroxymonosulfate (PMS) catalysts to produce SO4•- remains a research hotspot for dye wastewater treatment. In this work, a cobalt based metal-organic framework compound with formula Co(μ6-odip)0.5(μ2-OH2)0.5(H2O)2•1.5H2O (1) was synthesized by solvothermal method using 5,5'-oxydiisophthalic acid (H4odip) ligand and Co2+ ions. The reaction solvent was acetonitrile and water, the reaction temperature was 135 ℃. The obtained pink crystal compound has the good water stability and acid-base resistance. The structure and composition of 1 were characterized by X-ray single crystal and powder diffraction, thermogravimetric analysis, elemental analysis and infrared spectroscopy. Complex 1 belongs to monoclinic system, C2/c space group with cell parameters: a=1.6101(9) nm, b=1.5508(10) nm, c=0.9660(6) nm, α=90°, β=112.70(2)°, γ=90°. Moreover, the catalytic performance of 1 by peroxymonosulfate activation for degradation of methylene blue was tested in water by UV-Vis spectrophotometer. At the same time, the effects of 1 and peroxymonosulfate loading, reaction temperature and solution pH on dye degradation were systematically studied. The reaction mechanism of dye degradation was explored through free radical capture experiment. The test method is to take 30 mL of dye solution (20 mg/L) in a beaker and add 3 mg 1 and 0.5 mL PMS (100 mg/L). Keep stirring throughout the experiment. At a certain time interval, the supernatant of dye solution was taken and the absorption intensity at the maximum absorption wavelength (λ=665 nm) was measured by UV-Vis spectrophotometer to monitor the change of methylene blue (MB) concentration. The above method is also applicable to all comparison experiments. The pH of the dye solution was adjusted using hydrochloric acid and sodium hydroxide at a concentration of 0.1 mol/L. Radical scavenging agents were added to the reaction system in the free radical trapping experiment. The experimental results show that the 1 can generate reactive oxygen species (ROS) by activating peroxymonosulfate, and rapidly degrade MB in aqueous solution, the degradation rate can reach 97.4% within 8 min, and the catalytic activity is good in a wide range of pH. The results showed that 1 and PMS loading capacity were the key factors for the degradation of dyes by activated peroxymonosulfate, and the degradation rate could be improved by increasing the compound loading capacity, PMS concentration and temperature. After five cycles, the compound still retained a high degradation rate of 90.8%. A comprehensive analysis of the quenching experiment and electron paramagnetic resonance (EPR) test results confirmed that the ROS produced by the 1/PMS system include SO4•-, •OH, O2•- and 1O2, among which SO4•-, •OH and 1O2 play a major role in the catalytic degradation of MB, but O2•- can also promote the catalytic degradation of MB. The above research results indicate that 1 can be used as an effective and reusable heterogeneous catalyst for the treatment of dye wastewater by peroxymonosulfate activation.

Cite this article

Yang Liu , Fengqin Gao , Zhanying Ma , Yinli Zhang , Wuwu Li , Lei Hou , Xiaojuan Zhang , Yaoyu Wang . Co-based Metal-organic Framework for High-efficiency Degradation of Methylene Blue in Water by Peroxymonosulfate Activation[J]. Acta Chimica Sinica, 2024 , 82(2) : 152 -159 . DOI: 10.6023/A23100459

References

[1]
Sriram, G.; Bendre, A.; Mariappan, E.; Altalhi, T.; Kigga, M.; Ching, Y. C.; Jung, H. Y.; Bhaduri, B.; Kurkuri, M. Sustainable Mater. Technol. 2022, 31, e00378.
[2]
Tambat, S. N.; Sane, P. K.; Suresh, S.; Varadan, N.; Pandit, A. B.; Sontakke, S. M. Adv. Powder Technol. 2018, 11, 2626.
[3]
Deng, Y. C.; Tang, L.; Zeng, G. M.; Feng, C. Y.; Dong, H. R.; Wang, J. J.; Feng, H. P.; Liu, Y. N.; Zhou, Y. Y.; Pang, Y. Environ. Sci.: Nano 2017, 4, 1494.
[4]
Jiang, L. B.; Yuan, X. Z.; Zeng, G. M.; Wu, Z. B.; Liang, J.; Chen, X. H.; Leng, L. J.; Wang, H.; Wang, H. Appl. Catal., B 2018, 221, 715.
[5]
Xiao, X.; Tu, S. H.; Lu, M. L.; Zhong, H.; Zheng, C. X.; Zuo, X. X.; Nan, J. M. Appl. Catal. B: Environ. 2016, 198, 124.
[6]
Wang, W. T.; Lai, X. T.; Yan, S. Q.; Zhu, L.; Yao, Y. Y.; Ding, L. M. Acta Chim. Sinica 2023, 81, 222. (in Chinese)
[6]
(王文涛, 赖欣婷, 闫士全, 朱雷, 姚玉元, 丁黎明, 化学学报, 2023, 81, 222.)
[7]
Miyata, M.; Ihara, I.; Yoshid, G.; Toyod, K.; Umetsu, K. Water Sci. Technol. 2011, 63, 456.
[8]
Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hubner, U. Water Research 2018, 139, 118.
[9]
Giannakis, S.; Lin, K. Y. A.; Ghanbari, F. Chem. Eng. J. 2021, 406, 127083.
[10]
Huang, X.; Zhang, S. T.; Tang, Y. J.; Zhang, X. Y.; Bai, Y.; Pang, H. Coord. Chem. Rev. 2021, 449, 214216.
[11]
Huang, D. L.; Zhang, G. X.; Yi, J.; Cheng, M.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Zhou, C. Y.; Xue, W. J.; Wang, R. Z.; Li, Z. H.; Chen, S. Chemosphere 2021, 263, 127672.
[12]
Yang, Q. J.; Choi, H.; Al-Abed, S. R.; Dionysiou, D. D. Appl. Catal., B 2009, 88, 462.
[13]
Huang, G. X.; Wang, C. Y.; Yang, C. W.; Guo, P. C.; Yu, H. Q. Environ. Sci. Technol. 2017, 51, 12611.
[14]
Oh, W. D.; Dong, Z. L.; Lim, T. T. Appl. Catal. B Environ. 2016, 194, 169.
[15]
Li, J. L.; Zhu, W. H.; Gao, Y.; Lin, P.; Liu, J. W.; Zhang, J. F.; Huang, T. L. Sep. Purif. Technol. 2022, 285, 120362.
[16]
Wang, C. H.; Kim, J.; Malgras, V.; Na, J.; Lin, J. J.; You, J.; Zhang, M.; Li, J. S.; Yamauchi, Y. Small 2019, 15, 1900744.
[17]
Rojas, S.; Horcajada, P. Chem. Rev. 2020, 120, 8378.
[18]
Zhu, W. K.; Han, M. S.; Kim, D.; Zhang, Y.; Kwon, G.; You, J.; Jia, C.; Kim, J. Environ. Res. 2022, 205, 112417.
[19]
Sun, K.; Qian, Y. Y.; Jiang, H. L. Angew. Chem. Int. Ed. 2023, 62, e202217565.
[20]
Jiao, L.; Jiang, H. L. Chin. J. Catal. 2023, 45, 1.
[21]
Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2004, 38, 3705.
[22]
Zhao, J. Y.; Zhang, Y. B.; Quan, X.; Chen, S. Sep. Purif. Technol. 2010, 71, 302.
[23]
Wang, Y.; Li, X.; Hu, X. L.; Su, Z. M. J. Solid State Chem. 2020, 289, 121443.
[24]
Sun, H. Q.; Zhou, G. L.; Liu, S. Z.; Ang, H. M.; Tadé, M. O.; Wang, S. B. ACS Appl. Mater. Interfaces 2012, 4, 6235.
[25]
Tang, D.; Zhang, G. K.; Guo, S. Colloid Interface Sci. 2015, 454, 44.
[26]
Xu, L. L.; Liu, W. P.; Li, X. F.; Rashid, S.; Shen, C.; Wen, Y. Z. RSC Adv. 2015, 5, 12248.
[27]
Yang, Y.; Fu, P.; Li, X.; Su, Z. M.; Xu, N.; Wang, X. L. Inorg. Chem. Commun. 2020, 122, 108282.27
[28]
Zhu, M. P.; Yang, J. C. E.; Duan, X. G.; Zhang, D. D.; Wang, S. B.; Yuan, B. L.; Fu, M. L. Chem. Eng. J. 2020, 397, 125339.
[29]
Klu, P. K.; Khan, M. A. N.; Wang, C. H.; Qi, J. E.; Sun, X. Y.; Li, J. S. Environ. Res. 2022, 207, 112148.
[30]
Tuan, D. D.; Nguyen, N. H.; Quang, N. V.; Park, Y. K.; Lin, C. H.; Ghotekar, S.; Wang, H. T.; Chen, W. H.; Yee, Y. F.; Lin, K. Y. A. J. Environ. Chem. Eng. 2023, 11, 110789.
[31]
Qi, M. Y.; Lin, P.; Shi, Q. Y.; Bai, H. L.; Zhang, H.; Zhu, W. H. Process Saf. Environ. Prot. 2023, 171, 847.
[32]
Xie, F. S.; Shi, Q. Y.; Bai, H. L.; Liu, M. Y.; Zhang, J. B.; Qi, M. Y.; Zhang, J. F.; Li, Z. H.; Zhu, W. H. Chemosphere 2023, 313, 137384.
[33]
Feng, Y. Z.; Liu, M. Y.; Shi, Q. Y.; Song, Y. N.; Yang, L. N.; Zhang, J. F.; Li, Z. H.; Zhu, W. H. J. Environ. Chem. Eng. 2023, 11, 111365.
[34]
Zhao, H.; Sun, H. J.; Wang, L.; Li, X. Y. Acta Chim. Sinica 2015, 73, 1307. (in Chinese)
[34]
(赵华, 孙宏建, 王麟, 李晓燕, 化学学报, 2015, 73, 1307.)
[35]
Liu, Y.; Shi, W. J.; Lu, Y. K.; Liu, G.; Hou, L.; Wang, Y. Y. Inorg. Chem. 2019, 58, 16743.
[36]
Liu, H. T.; Ding, L.; Zhou, C. C.; Zou, H. Q.; Lu, J.; Wang, S. N.; Li, Y. W. Chinese J. Inorg. Chem. 2023, 39, 596. (in Chinese)
[36]
(刘厚亭, 丁利, 周传聪, 邹会琪, 卢静, 王素娜, 李允伍, 无机化学学报, 2023, 39, 596.)
[37]
Chen, X. H.; Zhang, Y. S.; Li, W. B.; Guan, X. W.; Ye, J. W.; Chen, L.; Wang, H. P.; Bai, J.; Mo, Z. W.; Chen, X. M. Inorg. Chem. Front. 2022, 9, 2328.
[38]
Xiao, Z. Y.; Li, Y.; Fan, L.; Wang, Y. X.; Li, L. J. Colloid Interface Sci. 2021, 589, 298.
[39]
Zhang, K.; Sun, D.; Ma, C.; Wang, G. L.; Dong, X. L.; Zhang, X. X. Chemosphere 2020, 241, 125021.
[40]
Luo, X. S.; Bai, L. M.; Xing, J. J.; Zhu, X. W.; Xu, D. L.; Xie, B. H.; Gan, Z. D.; Li, G. B.; Liang, H. ACS Appl. Mater. Interfaces 2019, 11, 35720.
[41]
Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 513.
[42]
Li, X. H.; Guo, W. L.; Liu, Z. H.; Wang, R. Q.; Liu, H. Appl. Surf. Sci. 2016, 369, 130.
[43]
Luo, X.; Liang, H.; Qu, F.; Ding, A.; Cheng, X.; Tang, C. Y.; Li, G. Chemosphere 2018, 200, 237.
Outlines

/