Original article

Machine Learning for Predicting Band Gap in Boron-containing Materials

  • Junqing Li ,
  • Qianxi Song ,
  • Ziyi Liu ,
  • Dongqi Wang
Expand
  • State Key Laboratory of Fine Chemistry, Key Laboratory of Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China

Received date: 2023-10-27

  Online published: 2024-01-08

Supported by

State Key Research and Development Program(2021YFA1500301); Fundamental Research Funds for the Central Universities(DUT20RC(3)081); LiaoNing Revitalization Talents Program(XLYC2002015)

Abstract

New materials are an important driving force for social development. In recent years, attention on boron-containing materials is growing in the fields of new energy and catalysis, and calls for compelling need for in-depth study of their structure-property relationship to contribute to the research and development of boron-containing materials. In this work, on the aware of the shift of materials research from traditional trial-and-error paradigm to data-driven research paradigm, we explored the application of ten important machine learning algorithms in the prediction of band gaps of boron-containing materials through feature selection (Pearson correlation analysis), grid search-based optimization (Model optimal parameters), and feature importance analysis (interpretability analysis of the model). The results show that the band gap prediction model using the Random Forest algorithm outperforms the other models with a 84% prediction accuracy, and the total magnetization of boron-containing materials is identified to significantly correlate negatively with the band gap, i.e. the smaller the total magnetization of the material, the larger its band gap. The advantage of the Random Forest algorithm over other models is that it is better able to capture correlations between features. For example, the linear model is unable to detect the importance of the total magnetization of boron-containing materials from the material features, thus leading to a lower model prediction performance. This work shows that machine learning methods can be used to guide the design of boron-containing materials with specific band gap. Meanwhile, the results also show that, as an integrated learning model, Random Forest has good learning ability and stable prediction performance, and can be applied to the prediction of band gap and other material properties of other types of material systems, accelerating the design and optimization process of material properties, and is of great scientific significance for the rapid screening and high-performance prediction of new functional materials.

Cite this article

Junqing Li , Qianxi Song , Ziyi Liu , Dongqi Wang . Machine Learning for Predicting Band Gap in Boron-containing Materials[J]. Acta Chimica Sinica, 2024 , 82(4) : 387 -395 . DOI: 10.6023/A23100473

References

[1]
Fujimori, M.; Nakata, T.; Nakayama, T.; Nishibori, E.; Kimura, K.; Takata, M.; Sakata, M. Phys. Rev. Lett. 1999, 82, 4452.
[2]
Shen, Y. F.; Xu, C.; Huang, M.; Wang, H. Y.; Cheng, L. J. Prog. Chem. 2016, 28, 1601. (in Chinese)
[2]
(沈艳芳, 徐畅, 黄敏, 王海燕, 程龙玖, 化学进展, 2016, 28, 1601.)
[3]
Yang, X. Q.; Hu, Y.; Zhang, J. L.; Wang, Y. Q.; Pei, C. M.; Liu, F. Acta Physica Sinica 2014, 63, 048102. (in Chinese)
[3]
(杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞, 物理学报, 2014, 63, 048102.)
[4]
Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
[5]
Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Nat. Chem. 2016, 8, 563.
[6]
Li, P.; Zhang, X.; Wang, J.; Xue, Y.; Yao, Y.; Chai, S.; Zhou, B.; Wang, X.; Zheng, N.; Yao, J. J. Am. Chem. Soc. 2022, 144, 5930.
[7]
Hao, K. R.; Yan, Q. B.; Su, G. Phys. Chem. Chem. Phys. 2020, 22, 709.
[8]
Cheng, Z. S.; Zhang, X. M.; Zhang, H.; Liu, H. Y.; Yu, X.; Dai, X. F.; Liu, G. D.; Chen, G. F. J. Phys. Chem. C 2022, 126, 21542.
[9]
Zhan, C.; Zhang, P. F.; Dai, S.; Jiang, D. E. ACS Energy Lett. 2016, 1, 1241.
[10]
Qiu, B.; Lu, W. D.; Gao, X. Q.; Sheng, J.; Ji, M.; Wang, D. Q.; Lu, A. H. J. Catal. 2023, 417, 14.
[11]
Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; Mcdermott, W. P.; Chieregato, A.; Hermans, I. Science 2016, 354, 1570.
[12]
Lu, X.; Li, K.; Xie, Y.; Qi, S.; Shen, Q.; Yu, J.; Huang, L.; Zheng, X. J. Biomed. Mater. Res. Part A 2019, 107, 12.
[13]
Liu, L.; Zhao, Z.; Yu, T.; Zhang, S.; Lin, J.; Yang, G. J. Phys. Chem. C 2018, 122, 6801.
[14]
Gao, Y.; Ma, Y. J. Phys. Chem. C 2019, 123, 23145.
[15]
Tian, X. X.; Xuan, X. Y.; Yu, M.; Mu, Y. W.; Lu, H. G.; Zhang, Z. H.; Li, S. D. Nanoscale 2019, 11, 11099.
[16]
Xu, L.; Wang, A.; Li, B.; Zhao, J.; Zeng, H.; Zhang, S. J. Phys. Chem. Lett. 2022, 13, 6455.
[17]
Yun, J.; Zhang, Y.; Xu, M.; Yan, J.; Zhao, W.; Zhang, Z. J. Mater. Sci. 2017, 52, 10294.
[18]
Xu, J.; Wan, Q.; Anpo, M.; Lin, S. J. Phys. Chem. C 2020, 124, 6624.
[19]
Chung, H. Y.; Weinberger, M. B.; Levine, J. B.; Cumberland, R. W.; Kavner, A.; Yang, J. M.; Tolbert, S. H.; Kaner, R. B. Science 2007, 316, 436.
[20]
Yao, Y.; Zhang, Z.; Jiao, L. Energy Environ. Mater. 2021, 5, 470.
[21]
Gabani, S.; Flachbart, K.; Siemensmeyer, K.; Mori, T. J. Alloys Compd. 2020, 821, 153201.
[22]
Yan, X.; Jin, Q.; Jiang, Y.; Yao, T.; Li, X.; Tao, A.; Gao, C.; Chen, C.; Ma, X.; Ye, H. ACS Appl. Mater. Interfaces 2022, 14, 36875.
[23]
Curtarolo, S.; Hart, G. L. W.; Nardelli, M. B.; Mingo, N.; Sanvito, S.; Levy, O. Nat. Mater. 2013, 12, 191.
[24]
Draxl, C.; Scheffler, M. J. Phys. Mater 2019, 2, 036001.
[25]
Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. APL Mater. 2013, 1, 011002.
[26]
Mehl, M. J.; Hicks, D.; Toher, C.; Levy, O.; Hanson, R. M.; Hart, G.; Curtarolo, S. Comput. Mater. Sci. 2017, 136, S1-S828.
[27]
De Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L.-Q.; Moore, J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.; Analytis, J.; Dabo, I.; Delongchamp, D. M.; Fiete, G. A.; Grason, G. M.; Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Rodriguez, E.; Stevanovic, V.; Suntivich, J.; Thornton, K.; Zhao, J.-C. npj Comput. Mater. 2019, 5, 41.
[28]
Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Scheffler, M.; Von Lilienfeld, O. A.; Tkatchenko, A.; Müller, K.-R. J. Chem. Theory Comput. 2013, 9, 3404.
[29]
Wei, X. H.; Zhou, C. B.; Shen, X. X.; Liu, Y. Y.; Tong, Q. C. Journal of Jilin University (Engineering and Technology Edition), 2021, 51, 667. (in Chinese)
[29]
(魏晓辉, 周长宝, 沈笑先, 刘圆圆, 童群超, 吉林大学学报(工学版), 2021, 51, 667.)
[30]
Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Comput. Phys. Commun. 2012, 183, 2063.
[31]
Huang, Y.; Yu, C.; Chen, W.; Liu, Y.; Li, C.; Niu, C.; Wang, F.; Jia, Y. J. Mater. Chem. C 2019, 7, 3238.
[32]
Dey, P.; Bible, J.; Datta, S.; Broderick, S.; Jasinski, J.; Sunkara, M.; Menon, M.; Rajan, K. Comput. Mater. Sci. 2014, 83, 185.
[33]
Xu, Y. L.; Wang, X. M.; Li, X.; Xi, L. L.; Ni, J. Y.; Zhu, W. H.; Zhang, W.; Yang, J. Sci. Sin. Tech. 2019, 49, 44. (in Chinese)
[33]
(徐永林, 王香蒙, 李鑫, 席丽丽, 倪剑樾, 朱文浩, 张武, 杨炯, 中国科学:技术科学, 2019, 49, 44.)
[34]
Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Comput. Mater. Sci. 2013, 68, 314.
[35]
Hauke, J.; Kossowski, T. Quaest. Geogr. 2011, 30, 87.
[36]
Lundberg, S. M.; Erion, G.; Chen, H. Nat. Mach. Intell. 2020, (2), 56.
[37]
Ward, L.; Dunn, A.; Faghaninia, A.; Zimmermann, N. E. R.; Bajaj, S.; Wang, Q.; Montoya, J.; Chen, J.; Bystrom, K.; Dylla, M.; Chard, K.; Asta, M.; Persson, K. A.; Snyder, G. J.; Foster, I.; Jain, A. Comput. Mater. Sci. 2018, 152, 60.
[38]
Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. npj Comput. Mater. 2016, 2, 16028.
Outlines

/