Review

Research Progress of CO2 Capture and Membrane Separation by Pebax Based Materials

  • Wen He ,
  • Bo Wang ,
  • Hanjun Feng ,
  • Xiangru Kong ,
  • Tao Li ,
  • Rui Xiao
Expand
  • a National Energy Group Jinjie Energy Co., Yulin 719319, China
    b Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China

Received date: 2023-10-26

  Online published: 2024-01-11

Supported by

National Natural Science Foundation of China(52336007); Fundamental Research Funds for the Central Universities(2242023k30026)

Abstract

Membrane separation technology for CO2 is a critical means of achieving the carbon peaking and carbon neutrality goals, and the performance of membrane materials significantly impacts the effectiveness of membrane separation. Polyether block amide (Pebax), known for its high permeability and selectivity towards CO2, along with high mechanical strength and excellent chemical stability, is a highly promising polymer for gas separation membrane materials due to its cost-effectiveness. However, the permeability and selectivity of pure Pebax membranes for CO2 are still constrained by the “trade-off ” effect. Therefore, the future development direction involves the physical or chemical optimization of Pebax to enhance its gas separation performance. This review introduces the characteristics of Pebax-based membrane materials for CO2 capture and explores the factors influencing their gas separation performance. The emphasis is on optimizing Pebax preparation processes, promoting transfer membranes, crosslinking, and blending four types of ultra-thin Pebax composite membranes. Additionally, the paper reviews the research progress on Pebax-based mixed matrix membranes and filler functionalization. From the perspective of process improvement, methods such as choosing a shorter chain length of polyamide (PA), increasing casting solution concentration, using solvents with dissolution parameters closer to Pebax, and employing lower drying temperatures contribute to the formation of more regular and higher crystallinity membranes, enhancing gas membrane separation selectivity. Combining grafting, plasma treatment, and other techniques in the preparation of composite membrane materials allows for minimizing the thickness of the Pebax layer to maximize permeability. In facilitated transport membranes, further research is required to explore the “competition-promotion” relationship between water and CO2 transport for different CO2 carriers. Reducing the free water content in the membrane will directly limit the generation of CO2 carriers like bicarbonate, potentially hindering CO2 dissolution in coordination with functional groups such as carboxylic acids. To overcome the limitations of a single material and achieve new properties that a single component cannot attain, the review suggests selecting multiple polymers or fillers with favorable physical and chemical properties and compatibility at the polymer-filler interface to prepare mixed matrix membranes (MMMs). Choosing porous fillers or polymer materials with good synergistic effects, constructing ternary or even quaternary systems, and directionally controlling the membrane's pore structure and hydrophilic-hydrophobic characteristics hold the potential to break through the trade-off relationship while obtaining superior mechanical strength, durability, and tolerance to harsh operating environments. In conclusion, based on the above findings, this review provides a perspective on the future optimization directions for Pebax-based membrane materials, addressing the current trade-off between permeability and selectivity.

Cite this article

Wen He , Bo Wang , Hanjun Feng , Xiangru Kong , Tao Li , Rui Xiao . Research Progress of CO2 Capture and Membrane Separation by Pebax Based Materials[J]. Acta Chimica Sinica, 2024 , 82(2) : 226 -241 . DOI: 10.6023/A23100467

References

[1]
Faisal, E. W.; Almomani, F.; Tawalbeh, M. Fuel 2023, 344, 128102.
[2]
Hamid, M.; Yaw, T.; Tohir, M. J. Ind. Eng. Chem. 2021, 98, 17.
[3]
Park, H. B.; Kamcev, J.; Robeson, L. Science 2017, 356, 6343.
[4]
Yin, F.; Zeng, D.-W.; Qiu, Y. Energy Environ. Prot. 2023, 37, 29. (in Chinese)
[4]
(尹凡, 曾德望, 邱宇, 能源环境保护, 2023, 37, 29.)
[5]
Perez, E. V.; Ferraris, J. P.; Balkus, K. J. J. Membr. Sci. 2023, 677, 121619.
[6]
(a) Kamble, A. R.; Patel, C. M.; Murthy, Z. V. Renew. Sust. Energ. Rev. 2021, 145, 111062.
[6]
(b) Valappil, R. S.; Ghasem, N.; Marzouqi, M. J. Ind. Eng. Chem. 2021, 98, 103.
[7]
Dai, Y.; Ruan, X.; Yan, Z. Sep. Purif. Technol. 2016, 166, 171.
[8]
Sanchez-Lainez, J.; Ballester-Catalan, M.; Javierre-Ortin, E. Dalton Trans. 2020, 49, 2905.
[9]
Bondar, V. I.; Freeman, B. D.; Pinnau, I. J. Polym. Sci. 1999, 37, 2463.
[10]
Liu, N.; Cheng, J.; Hu, L. Chem. Eng. J. 2022, 427, 130845.
[11]
Berned-Samatan, V.; Tellez, C.; Coronas, J. Membranes 2023, 13, 71.
[12]
Armstrong, S.; Freeman, B.; Hiltner, A. Polymer 2012, 53, 1383.
[13]
Rabiee, H.; Meshkat, A. S.; Soltanieh, M. J. Ind. Eng. Chem. 2015, 27, 223.
[14]
Isanejad, M.; Azizi, N.; Mohammadi, T. J. Appl. Polym. Sci. 2017, 134, 44531.
[15]
Martínez-Izquierdo, L.; Malankowska, M.; Téllez, C. J. Environ. Chem. Eng. 2021, 9, 105624.
[16]
Azizi, N.; Jazebizadeh, M. H.; Azizi, F. Mater. Today Commun. 2023, 34, 105460.
[17]
Marcus, Y. J. Solution Chem. 2019, 48, 1025.
[18]
Wang, L.; Li, Y.; Li, S. J. Energy Chem 2014, 23, 717.
[19]
Wang, Y.; Li, H.; Dong, G. Ind. Eng. Chem. Res. 2015, 54, 7273.
[20]
Martínez-Izquierdo, L.; Malankowska, M.; Sánchez-Laínez, J.; Téllez, C.; Coronas, J. Roy. Soc. Open Sci. 2019, 6, 190866.
[21]
Guo, H.; Xu, W.; Wei, J. Membranes 2023, 13, 359.
[22]
Czichos, H.; Saito, T.; Smith, L. Springer handbook of materials measurement methods, Springer, New York, 2006, pp. 153-227.
[23]
Karamouz, F.; Maghsoudi, H.; Yegani, R. J. Nat. Gas Sci. Eng. 2016, 35980.
[24]
Li, P.-R.; Xiao, G.-Y.; Chen, Y.-L. Acta Polym. Sin. 2023, 54, 1. (in Chinese)
[24]
(李品儒, 肖国勇, 陈元林, 高分子学报, 2023, 54, 1.)
[25]
Kim, J. H.; Ha, S. Y.; Lee, Y. M. J. Membr. Sci. 2001, 190, 179.
[26]
Jiang, X.; Goh, K.; Wang, R. J. Membr. Sci. 2022, 658, 120741.
[27]
Liu, J.; Pan, Y.; Xu, J. J. Membr. Sci. 2023, 667, 121183.
[28]
Selyanchyn, O.; Selyanchyn, R.; Fujikawa, S. ACS Appl. Mater. Interfaces 2020, 12, 33196.
[29]
Zhang, M.; Chen, L.; Yuan, Z. Ind. Eng. Chem. Res. 2023, 62, 8902.
[30]
Wang, Y.-D.; Xiao, Q.; Zhong, Y.-J. Acta Phys. Chim. Sin. 2017, 33, 2058. (in Chinese)
[30]
(王亚丹, 肖强, 钟依均, 物理化学学报, 2017, 33, 2058.)
[31]
Gan, C.-J.; Xu, X.-C.; Jiang, X.-W. Chin. J. Polym. Sci. 2019, 37, 815.
[32]
Dong, S.; Wang, Z.; Sheng, M. J. Membr. Sci. 2020, 610, 118221.
[33]
Wu, H.; Zhang, X.; Xu, D. J. Membr. Sci. 2009, 337, 61.
[34]
Hong, T.; Cao, P.-F.; Zhao, S. Macromolecules 2019, 52, 5819.
[35]
Li, P.; Wang, Z.; Li, W. ACS Appl. Mater. Interfaces 2015, 7, 15481.
[36]
Matsuyama, H.; Teramoto, M.; Hirai, K. J. Membr. Sci. 1995, 99, 139.
[37]
Gancarz, I.; Po?niak, G.; Bryjak, M. Eur. Polym. J. 1999, 35, 1419.
[38]
Modarresi, S.; Soltanieh, M.; Mousavi, S.-A. J. Appl. Polym. Sci. 2012, 124, 199.
[39]
Selyanchyn, R.; Staykov, A.; Fujikawa, S. RSC Adv. 2016, 6, 88664.
[40]
Zhao, D.; Wu, Y.; Ren, J. J. Membr. Sci. 2019, 570, 184.
[41]
Ren, X.; Ren, J.; Li, H. Int. J. Greenh. Gas Control. 2012, 8, 111.
[42]
Kamal, S.-W., Chiang, K.-Y. Chemosphere 2023, 338, 139478.
[43]
Deng, L.; H?gg, M.-B. Ind. Eng. Chem. Res. 2015, 54, 11139.
[44]
Sandru, M.; Haukeb?, S.-H.; H?gg, M.-B. J. Membr. Sci. 2010, 346, 172.
[45]
Hoshino, Y.; Gyobu, T.; Imamura, K. ACS Appl. Mater. Interfaces 2021, 13, 30030.
[46]
Meshkat, S.; Kaliaguine, S.; Rodrigue, D. Sep. Purif. Technol. 2019, 212, 901.
[47]
Zhang, H.; Tian, H.; Zhang, J. Int. J. Greenh. Gas Control. 2018, 78, 85.
[48]
Taniguchi, I.; Kinugasa, K.; Toyoda, M. Polym. J. 2021, 53, 129.
[49]
Kamio, E.; Kasahara, S.; Moghadam, F. Chem. Eng. Res. Des. 2020, 153, 284.
[50]
Murali, R. S., Sridhar, S.; Sankarshana, T. Ind. Eng. Chem. Res. 2010, 49, 6530.
[51]
Sanaeepur, H.; Mashhadikhan, S.; Mardassi, G. Korean J. Chem. Eng. 2019, 36, 1339.
[52]
Hossain, I.; Kim, D.; Munsur, A.-Z. ACS Appl. Mater. Interfaces 2020, 12, 27286.
[53]
Taheri, P.; Maleh, M. S.; Raisi, A. J. Environ. Chem. Eng. 2021, 9, 105877.
[54]
Robeson, L. M. Ind. Eng. Chem. Res. 2010, 49, 11859.
[55]
Yong, W.-F.; Zhang, H. Prog. Mater. Sci. 2021, 116, 100713.
[56]
Panapitiya, N. P.; Wijenayake, S. N.; Nguyen, D.-D. ACS Appl. Mater. Interfaces 2015, 7, 18618.
[57]
Moon, J. D.; Bridge, A. T.; D’Ambra, C. J. Membr. Sci. 2019, 582, 182.
[58]
Benayache, W.; Benaniba, M. T.; Ali, Z. J. Mol. Liq. 2024, 394, 123745.
[59]
Feng, J.; Chan, C.; Li, J. Polym. Eng. Sci. 2003, 43, 1058.
[60]
Nadeali, A.; Kalantarim, S.; Yarmohammadi, M. ACS Sustainable Chem. Eng. 2020, 8, 12775.
[61]
He, R.-R.; Cong, S.-Z.; Xu, S.-N.; Han, S.-Q.; Guo, H.-Y.; Liang, Z.-Y.; Wang, J.; Zhang, Y.-T. J. Membr. Sci. 2021, 624, 119081.
[62]
Taheri, P.; Raisi, A.; Maleh, M. S. Environ. Sci. Pollut. R. 2021, 28, 38274.
[63]
Liu, Y.; Yu, S.; Wu, H. J. Membr. Sci. 2014, 469, 198.
[64]
Kim, N. U.; Park, B. J.; Park, M. S. Chem. Eng. J. 2019, 360, 1468.
[65]
Clarizia, G.; Tasselli, F.; Simari, C. J. Phys. Chem. C 2019, 123, 11264.
[66]
Hassanzadeh, H.; Abedini, R.; Ghorbani, M. Ind. Eng. Chem. Res. 2022, 61, 13669.
[67]
Seong, M.-S.; Yu, H.-J.; Ha, S.-Y. J. Membr. Sci. 2022, 662, 120917.
[68]
Kanbua, C.; Rattanawongwiboon, T.; Khamlue, R. Int. J. Biol. Macromol. 2023, 248, 125844.
[69]
Nobakht, D.; Abedini, R. Process Saf. Environ. Prot. 2023, 170, 709.
[70]
Qi, X.-Y.; Hu, Y.-F.; Wang, R.-Y. Acta Chim. Sinica 2023, 81, 158. (in Chinese)
[70]
(戚兴怡, 胡耀峰, 王若愚, 化学学报, 2023, 81, 158.)
[71]
(a) Azizi, N.; Mohammadi, T.; Behbahani, R.-M. J. Energy Chem. 2017, 26, 454.
[71]
(b) Farashi, Z.; Azizi, N.; Homayoon, R. Pet. Sci. Technol. 2019, 37, 2412.
[72]
Ahmadpour, E.; Sarfaraz, M.-V.; Behbahani, R.-M. J. Nat. Gas Sci. Eng. 2016, 35, 33.
[73]
(a) Azizi, N.; Mohanunadi, T.; Behbahani, R.-M. Chem. Eng. Res. Des. 2017, 117, 177.
[73]
(b) Farashi, Z.; Azizi, S.; Arzhandi, M.-R. J. Nat. Gas Sci. Eng. 2019, 72, 103019.
[74]
Seddigh, E.; Azizi, M.; Sani, E.-S. Chin. J. Polym. Sci. 2014, 32, 402.
[75]
Khalilinejad, I.; Kargari, A.; Sanaeepur, H. Chem. Pap. 2017, 71, 803.
[76]
Aghaei, Z.; Naji, L.; Hadadi, A.-V. Sep. Purif. Technol. 2018, 199, 47.
[77]
Ahmad, J.; Rehman, W.-U.; Deshmukh, K. Polym.-Plastics Tech. Mat. 2019, 58, 366.
[78]
Shamsabadi, A. A.; Seidi, F.; Salehi, E. J. Mater. Chem. A 2017, 5, 4011.
[79]
(a) Setiawan, W. K.; Chiang, K. Y. J. Membr. Sci. 2023, 680, 121732.
[79]
(b) Zhu, H.-P.; Yuan, J.-W.; Zhao, J. Sep. Purif. Technol. 2019, 214, 78.
[79]
(c) Ariazadeh, M.; Farashi, Z.; Azizi, N. Korean J. Chem. Eng. 2020, 37, 295.
[80]
Kojabad, M. E.; Babaluo, A.; Tavakoli, A. J. Environ. Chem. Eng. 2021, 9, 106116.
[81]
(a) Surya, M. R.; Ismail, A. F.; Rahman, M. A. Sep. Purif. Technol. 2014, 129, 1.
[81]
(b) Lu, S.-C.; Wichidit, T.; Narkkun, T. Polymers 2023, 15, 102.
[81]
(c) Maleh, M. S.; Raisi, A. RSC Adv. 2020, 10, 17061.
[81]
(d) Zheng, Y.; Wu, Y.; Zhang, B. J. Appl. Polym. Sci. 2020, 9, 137.
[82]
Shi, Q. J. Fuel Chem. Technol. 2021, 49, 1531. (in Chinese)
[82]
(石勤, 燃料化学学报, 2021, 49, 1531.)
[83]
Zhao, D.; Ren, J.-Z.; Li, H. J. Energy Chem. 2014, 23, 227.
[84]
Zhang, S.; Zheng, Y.; Wu, Y. J. Appl. Polym. Sci. 2021, 138, 51336.
[85]
Li, X.; Yu, K.; He, Z. Chin. J. Chem. Eng. 2023, 56, 273.
[86]
Zhao, X.; Liu, W.; Liu, X. Ind. Eng. Chem. Res. 2021, 60, 13927.
[87]
Tengku, H.-T.; Jusoh, N.; Yeong, Y.-F. Mater. Today. Proc. 2021, 47, 1263.
[88]
Gusev, A.-A.; Guseva, O. Adv. Mater. 2007, 19, 2672.
[89]
Yu, B.; Cong, H.-L.; Li, Z.-J. J. Appl. Polym. Sci. 2013, 130, 2867.
[90]
Jeong, W.; Kessler, M. R. Chem. Mater. 2008, 20, 7060.
[91]
(a) Dai, Z.; Deng, J.; Peng, K.-J. Ind. Eng. Chem. Res. 2019, 58, 12226.
[91]
(b) Azizi, N.; Arzani, M.; Mahdavi, H.-R. Korean J. Chem. Eng. 2017, 34, 2459.
[91]
(c) Habibiannejad, S. A.; Aroujalian, A.; Raisi, A. RSC Adv. 2016, 6, 79563.
[92]
Di, Z.-Y.; Zheng, X.-J.; Qi, Y. Chin. J. Struct. Chem. 2022, 41, 31.
[93]
Meshkat, S.; Kaliaguine, S.; Rodrigue, D. Sep. Purif. Technol. 2018, 200, 177.
[94]
Li, C.; Li, N.; Chang, L. Acta Chim. Sinica 2022, 80, 340. (in Chinese)
[94]
(李崇, 李娜, 常立美, 化学学报, 2022, 80, 340.)
[95]
Lv, X.; Ding, S.; Huang, L. ACS Appl. Mater. Interfaces 2022, 14, 49233.
[96]
Fu, J.-R.; Ben, T.; Qiu, S.-L. Acta Phys. Chim. Sin. 2020, 36, 218. (in Chinese)
[96]
(付静茹, 贲腾, 裘式纶, 物理化学学报, 2020, 36, 218.)
[97]
Li, X.; Yu, S.; Li, K. Sep. Purif. Technol. 2020, 248, 117080.
[98]
Wang, L.-W.; Wang, J.-J.; Wang, Y.-H.; Zhang, X.-R.; Li, J.-P. CIESC J. 2022, 73, 3068. (in Chinese)
[98]
(王立维, 王娟娟, 王永洪, 张新儒, 李晋平, 化工学报, 2022, 73, 3068.)
[99]
Wang, T.; Gao, X.; Gao, J.-F. Chem. Ind. Eng. Prog. 2023, 12, 1. (in Chinese)
[99]
(王涛, 高翔, 高继峰, 化工进展, 2023, 12, 1.)
[100]
Liang, C.; Huang, L.; Lv, X. ACS Appl. Nano Mater. 2023, 4, 2995.
[101]
Hou, W.; Cheng, J.; Liu, N. J. Environ. Chem. Eng. 2022, 10, 108029.
[102]
Wan, Y.-J.; Kong, D.-K.; Xiong, F. Chin. J. Chem. Eng. 2023, 61, 82.
[103]
Jiang, K.; Gao, Y.-T.; Zhang, P. Chin. Chem. Lett. 2023, 34, 108039.
[104]
Cheng, Y.-D.; Zhai, L.-Z.; Ying, Y.-P. J. Mater. Chem. A 2019, 7, 4549.
[105]
Fu, J.-R.; Ben, T. Acta Chim. Sinica 2020, 78, 805. (in Chinese)
[105]
(付静茹, 贲腾, 化学学报, 2020, 78, 805.)
[106]
Zhao, R.; Wu, H.; Yang, L. J. Membr. Sci. 2020, 600, 117841.
[107]
Liu, Y.; Wu, H.; Wu, S. J. Membr. Sci. 2021, 618, 118693.
[108]
Lv, L.-Q.; Zhao, Y.-L.; Wei, Y.-Y. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[108]
(吕露茜, 赵娅俐, 魏嫣莹, 化学学报, 2021, 79, 869.)
[109]
(a) Zhang, J.-H.; Xin, Q.-P.; Li, X. J. Membr. Sci. 2019, 570, 343.
[109]
(b) Mohammed, S. A.; Nasir, A. M.; Aziz, F. Sep. Purif. Technol. 2019, 223, 142.
[109]
(c) Pazani, F.; Aroujalian, A. Polym. Test. 2020, 81, 106264.
[109]
(d) Cheng, L.; Liu, G.-P.; Jin, W.-Q. Acta Phys. Chim. Sin. 2019, 35, 1090. (in Chinese)
[109]
(程龙, 刘公平, 金万勤, 物理化学学报, 2019, 35, 1090.)
[110]
Shen, Y.-J.; Wang, H.-X.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8, 23371.
[111]
Liu, G.-Z.; Cheng, L.; Chen, G.-N. Chem. Asian J. 2020, 15, 2364.
[112]
Shi, F.; Sun, J.-X.; Wang, J.-T. J. Membr. Sci. 2021, 620, 118850.
[113]
Zhao, Y.; Qiu, X.; Wang, J. New Chem. Mat. 2022, 1, 15. (in Chinese)
[113]
(赵烨, 丘晓琳, 王杰, 化工新型材料, 2022, 1, 15.)
[114]
(a) Gou, M.-M.; Zhu, W.-F.; Sun, Y.-Y. Sep. Purif. Technol. 2021, 259, 118107.
[114]
(b) Cheng, J.; Yang, C.; Hou, W. J. Membr. Sci. 2023, 670, 121356.
[114]
(c) Zhang, Q.; Zhou, M.; Liu, X.-F. J. Membr. Sci. 2021, 636, 119612.
[114]
(d) Zhu, W.-F.; Wang, L.-Z.; Cao, H.-H. J. Membr. Sci. 2023, 669, 121305.
[115]
Zhu, W.-F.; Qin, Y.; Wang, Z.-M. J. Energy Chem. 2019, 31, 1.
[116]
Ghanbari, R.; Marandi, A.; Zare, E. N. J. Environ. Chem. Eng. 2023, 11, 109269.
[117]
Liu, Y.; Wu, C.; Zhou, Z.-M. J. Membr. Sci. 2022, 659, 120787.
[118]
Fan, H.-W.; Peng, M.-H.; Strauss, I. J. Am. Chem. Soc. 2020, 142, 6872.
[119]
Li, X.-Q.; Zhang, J.; Su, F.-F. Acta Chim. Sinica 2022, 80, 848. (in Chinese)
[119]
(李晓倩, 张靖, 苏芳芳, 化学学报, 2022, 80, 848.)
[120]
Estahbanati, E. G.; Omidkh, M.; Amooghin, A. E. J. Ind. Eng. Chem. 2017, 51, 77.
[121]
Pishva, S.; Hassanajili, S. J. Ind. Eng. Chem. 2022, 107, 180.
[122]
Kamio, E.; Yoshioka, T.; Matsuyama, H. J. Chem. Eng. Jpn. 2023, 56, 2222000.
[123]
Moghadam, F.; Kamio, E.; Yoshioka, T. J. Membr. Sci. 2017, 530, 166.
[124]
Moghadam, F.; Kamio, E.; Matsuyama, H. J. Membr. Sci. 2017, 525, 290.
[125]
Wang, Y.-Y.; Niu, Z.-H.; Dai, Y.-Y. Sep. Purif. Technol. 2023, 325, 124667.
[126]
Habib, N.; Durak, O.; Uzun, A. Sep. Purif. Technol. 2023, 312, 123346.
[127]
Wang, D.-C.; Zheng, Y.-P.; Yao, D.-D. New J. Chem. 2019, 43, 11949.
[128]
Qiu, H.-Y.; Liu, H.-J.; Liu, X.-L. Mater. Lett. 2022, 325, 132854.
[129]
Rhyu, S. Y.; Kang, S.-W. J. Ind. Eng. Chem. 2021, 103, 216.
[130]
Azizi, N.; Jahanmahin, O.; Homayoon, R. Korean J. Chem. Eng. 2023, 40, 1457.
[131]
Liang, C.; Huang, L.; Lv, X. ACS Appl. Nano Mater. 2023, 6, 2995.
Outlines

/