Review

Research Progress on Metal-coordination-driven Self-assembly of 6,6"-Bis(2,6-dimethoxy-benzene)-terpyridine and Its Derivatives

  • Min Wang ,
  • Bangtang Chen ,
  • Qiaolin Chen ,
  • Jun Wang ,
  • Mingzhao Chen ,
  • Zhilong Jiang ,
  • Pingshan Wang
Expand
  • a Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006
    b College of Chemistry and Chemical Engineering, Central South University, Changsha 410083

Received date: 2023-12-19

  Online published: 2024-01-18

Supported by

National Natural Science Foundation of China(22101060); National Natural Science Foundation of China(21971257); Science and Technology Planning Project of Guangzhou(202201020201); Science and Technology Planning Project of Guangzhou(SL2022A03J01050)

Abstract

In the past few decades, coordination-driven self-assembly of metal ions and organic ligands has been extensively applied in the construction of a variety of functional two-dimensional (2D) and three-dimensional (3D) structures. The majority of these structures are consisted of one type of ligand. Nevertheless, there have been sustained efforts dedicated to constructing heteroleptic assemblies using various strategic methods in order to increase the complexity and sophistication of nano-scale structures. Heteroleptic assemblies involve the use of multiple types of ligands, to assemble metal ions into more intricate structures. This approach allows for the incorporation of different ligand geometries, charge densities, and functional groups, leading to increased structural diversity and potential for new properties. To achieve heteroleptic assemblies, various strategic methods have been employed. One common approach is the use of different ligands with complementary binding properties, allowing for the controlled formation of targeted structures. In recent years, 6,6"-bis(2,6-dimethoxy-phenyl)- terpyridine and its derivatives have received considerable attention in the research of coordination-driven supramolecular self-assembly. These ligands exhibit strong self-recognition ability and effectively suppress the formation of by-products in multicomponent self-assembly processes, giving them unique advantages in the precise construction of metal-coordination supramolecular structures involving multiple ligands. A large number of 2D and 3D supramolecular structures formed by the coordination of 6,6"-bis(2,6-dimethoxy-phenyl)-terpyridine ligands and their derivatives with metal ions have been reported. The successful construction of these 2D and 3D topological structures has not only enriched the research of terpyridine metal-coordination supramolecular structures but also demonstrated significant research value and broad prospects in fields such as luminescent materials, host-guest chemistry, drug delivery systems, and confined catalysis. Based on this, this review systematically summarizes the latest progress in the self-assembly of derivative ligands based on 6,6"-bis(2,6-dimethoxy- phenyl)-terpyridine in terms of ligand synthesis, structure construction and property study, and briefly discusses the current development opportunities and challenges faced in this field.

Cite this article

Min Wang , Bangtang Chen , Qiaolin Chen , Jun Wang , Mingzhao Chen , Zhilong Jiang , Pingshan Wang . Research Progress on Metal-coordination-driven Self-assembly of 6,6"-Bis(2,6-dimethoxy-benzene)-terpyridine and Its Derivatives[J]. Acta Chimica Sinica, 2024 , 82(3) : 336 -347 . DOI: 10.6023/A23120538

References

[1]
Jiang, Z.; Li, Y.; Wang, M.; Liu, D.; Yuan, J.; Chen, M.; Wang, J.; Newkome, G. R.; Sun, W.; Li, X.; Wang, P. Angew. Chem., Int. Ed. 2017, 56, 11450.
[2]
Sarkar, R.; Guo, K.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. Angew. Chem., Int. Ed. 2014, 53, 12182.
[3]
Li, Y.; Jiang, Z.; Wang, M.; Yuan, J.; Liu, D.; Yang, X.; Chen, M.; Yan, J.; Li, X.; Wang, P. J. Am. Chem. Soc. 2016, 138, 10041.
[4]
Schultz, A.; Li, X.; Barkakaty, B.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. J. Am. Chem. Soc. 2012, 134, 7672.
[5]
Jiang, Z.; Li, Y.; Wang, M.; Song, B.; Wang, K.; Sun, M.; Liu, D.; Li, X.; Yuan, J.; Chen, M.; Guo, Y.; Yang, X.; Zhang, T.; Moorefield, C. N.; Newkome, G. R.; Xu, B.; Li, X.; Wang, P. Nat. Commun. 2017, 8, 15476.
[6]
Zhang, Z.; Wang, H.; Wang, X.; Li, Y.; Song, B.; Bolarinwa, O.; Reese, R. A.; Zhang, T.; Wang, X.-Q.; Cai, J.; Xu, B.; Wang, M.; Liu, C.; Yang, H.-B.; Li, X. J. Am. Chem. Soc. 2017, 139, 8174.
[7]
Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Science 2015, 350, 1235.
[8]
MacGillivray, L. R.; Atwood, J. L. Nature 1997, 389, 469.
[9]
Roberts, D. A.; Pilgrim, B. S.; Cooper, J. D.; Ronson, T. K.; Zarra, S.; Nitschke, J. R. J. Am. Chem. Soc. 2015, 137, 10068.
[10]
Cao, L.; Wang, P.; Miao, X.; Dong, Y.; Wang, H.; Duan, H.; Yu, Y.; Li, X.; Stang, P. J. J. Am. Chem. Soc. 2018, 140, 7005.
[11]
Mahata, K.; Frischmann, P. D.; Wuerthner, F. J. Am. Chem. Soc. 2013, 135, 15656.
[12]
Hong, C. M.; Morimoto, M.; Kapustin, E. A.; Alzakhem, N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. J. Am. Chem. Soc. 2018, 140, 6591.
[13]
Suzuki, K.; Tominaga, M.; Kawano, M.; Fujita, M. Chem. Commun. 2009, 1638.
[14]
Meng, W.; Breiner, B.; Rissanen, K.; Thoburn, J. D.; Clegg, J. K.; Nitschke, J. R. Angew. Chem., Int. Ed. 2011, 50, 3479.
[15]
Tan, C.; Jiao, J.; Li, Z.; Liu, Y.; Han, X.; Cui, Y. Angew. Chem., Int. Ed. 2018, 57, 2085.
[16]
Xie, T.-Z.; Guo, K.; Guo, Z.; Gao, W.-Y.; Wojtas, L.; Ning, G.-H.; Huang, M.; Lu, X.; Li, J.-Y.; Liao, S.-Y.; Chen, Y.-S.; Moorefield, C. N.; Saunders, M. J.; Cheng, S. Z. D.; Wesdemiotis, C.; Newkome, G. R. Angew. Chem., Int. Ed. 2015, 54, 9224.
[17]
Clingerman, D. J.; Kennedy, R. D.; Mondloch, J. E.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Chem. Commun. 2013, 49, 11485.
[18]
Ghosh, K.; Hu, J.; White, H. S.; Stang, P. J. J. Am. Chem. Soc. 2009, 131, 6695.
[19]
Olenyuk, B.; Levin, M. D.; Whiteford, J. A.; Shield, J. E.; Stang, P. J. J. Am. Chem. Soc. 1999, 121, 10434.
[20]
Wang, H.; Ji, X.; Li, Z.; Huang, F. Adv. Mater. 2017, 29, 1606117.
[21]
Yamashina, M.; Sartin, M. M.; Sei, Y.; Akita, M.; Takeuchi, S.; Tahara, T.; Yoshizawa, M. J. Am. Chem. Soc. 2015, 137, 9266.
[22]
Yan, X.; Cook, T. R.; Wang, P.; Huang, F.; Stang, P. J. Nat. Chem. 2015, 7, 342.
[23]
Mugridge, J. S.; Zahl, A.; van Eldik, R.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2013, 135, 4299.
[24]
Xiao, T.; Elmes, R.; Yao, Y. Front. Chem. 2020, 8, 628200.
[25]
Xiao, T.; Zhou, L.; Sun, X.-Q.; Huang, F.; Lin, C.; Wang, L. Chin. Chem. Lett. 2020, 31, 1.
[26]
Horiuchi, S.; Yamaguchi, T.; Tessarolo, J.; Tanaka, H.; Sakuda, E.; Arikawa, Y.; Meggers, E.; Clever, G. H.; Umakoshi, K. Nat. Commun. 2023, 14, 155. DOI: 10.1038/s41467-023-35850-4
[27]
Jiang, B.; Zhang, J.; Ma, J.-Q.; Zheng, W.; Chen, L.-J.; Sun, B.; Li, C.; Hu, B.-W.; Tan, H.; Li, X.; Yang, H.-B. J. Am. Chem. Soc. 2016, 138, 738.
[28]
Bai, L.; Wang, N.; Li, Y. Adv. Mater. 2021, 34, 2102811.
[29]
Casini, A.; Crowley, J. D. Front. Chem. 2019, 7, 293.
[30]
Lu, Y.-L.; Song, J.-Q.; Qin, Y.-H.; Guo, J.; Huang, Y.-H.; Zhang, X.-D.; Pan, M.; Su, C.-Y. J. Am. Chem. Soc. 2022, 144, 8778.
[31]
Tan, C.; Jiao, J.; Li, Z.; Liu, Y.; Han, X.; Cui, Y. Angew. Chem., Int. Ed. 2018, 57, 2085.
[32]
Clever, G. H.; Punt, P. Acc. Chem. Res. 2017, 50, 2233.
[33]
Turunen, L.; Warzok, U.; Schalley, C. A.; Rissanen, K. Chem 2017, 3, 861.
[34]
Winter, A.; Hager, M. D.; Newkome, G. R.; Schubert, U. S. Adv. Mater. 2011, 23, 5728.
[35]
De, S.; Mahata, K.; Schmittel, M. Chem. Soc. Rev. 2010, 39, 1555.
[36]
Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Nature 2016, 540, 563.
[37]
Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kintzinger, J. P. Tetrahedron Lett. 1983, 24, 5095.
[38]
Sauvage, J. P.; Weiss, J. J. Am. Chem. Soc. 1985, 107, 6108.
[39]
Saha, M. L.; Pramanik, S.; Schmittel, M. Chem. Commun. 2012, 48, 9459.
[40]
Mahata, K.; Saha, M. L.; Schmittel, M. J. Am. Chem. Soc. 2010, 132, 15933.
[41]
Saha, M. L.; Bats, J. W.; Schmittel, M. Org. Biomol. Chem. 2013, 11, 5592.
[42]
Saha, M. L.; Schmittel, M. J. Am. Chem. Soc. 2013, 135, 17743.
[43]
Saha, M. L.; Mittal, N.; Bats, J. W.; Schmittel, M. Chem. Commun. 2014, 50, 12189.
[44]
Wang, S.-Y.; Fu, J.-H.; Liang, Y.-P.; He, Y.-J.; Chen, Y.-S.; Chan, Y.-T. J. Am. Chem. Soc. 2016, 138, 3651.
[45]
Mahata, K.; Schmittel, M. J. Am. Chem. Soc. 2009, 131, 16544.
[46]
Schmittel, M.; Ganz, A. Chem. Commun. 1997, 999.
[47]
Lal Saha, M.; Schmittel, M. Org. Biomol. Chem. 2012, 10, 4651.
[48]
Wang, S. Y.; Huang, J. Y.; Liang, Y. P.; He, Y. J.; Chen, Y. S.; Zhan, Y. Y.; Hiraoka, S.; Liu, Y. H.; Peng, S. M.; Chan, Y. T. Chem. - Eur. J. 2018, 24, 9274.
[49]
Fu, J.-H.; Wang, S.-Y.; Chen, Y.-S.; Prusty, S.; Chan, Y.-T. J. Am. Chem. Soc. 2019, 141, 16217.
[50]
Rousseaux, S. A. L.; Gong, J. Q.; Haver, R.; Odell, B.; Claridge, T. D. W.; Herz, L. M.; Anderson, H. L. J. Am. Chem. Soc. 2015, 137, 12713.
[51]
Wang, S.-C.; Cheng, K.-Y.; Fu, J.-H.; Cheng, Y.-C.; Chan, Y.-T. J. Am. Chem. Soc. 2020, 142, 16661.
[52]
Song, B.; Zhang, Z.; Wang, K.; Hsu, C.-H.; Bolarinwa, O.; Wang, J.; Li, Y.; Yin, G.-Q.; Rivera, E.; Yang, H.-B.; Liu, C.; Xu, B.; Li, X. Angew. Chem., Int. Ed. 2017, 56, 5258.
[53]
Riwar, L.-J.; Trapp, N.; Root, K.; Zenobi, R.; Diederich, F. Angew. Chem., Int. Ed. 2018, 57, 17259.
[54]
Xie, J.; Peng, H.-J.; Huang, J.-Q.; Xu, W.-T.; Chen, X.; Zhang, Q. Angew. Chem., Int. Ed. 2017, 56, 16415.
[55]
Yang, Y.; Jing, X.; Shi, Y.; Wu, Y.; Duan, C. J. Am. Chem. Soc. 2023, 145, 10136.
[56]
Kohlhaas, M.; Z?hres, M.; Mayer, C.; Engeser, M.; Merten, C.; Niemeyer, J. Chem. Commun. 2019, 55, 3298.
[57]
MacGillivray, L. R.; Atwood, J. L. Nature 1997, 389, 469.
[58]
Ugono, O.; Moran, J. P.; Holman, K. T. Chem. Commun. 2008, 1404.
[59]
Kobayashi, K.; Yamada, Y.; Yamanaka, M.; Sei, Y.; Yamaguchi, K. J. Am. Chem. Soc. 2004, 126, 13896.
[60]
He, L.; Wang, S.-C.; Lin, L.-T.; Cai, J.-Y.; Li, L.; Tu, T.-H.; Chan, Y.-T. J. Am. Chem. Soc. 2020, 142, 7134.
[61]
He, L.; Hsu, H.-K.; Li, L.; Lin, L.-T.; Tu, T.-H.; Ong, T.-G.; Liou, G.-G.; Chan, Y.-T. Chem 2022, 8, 494.
[62]
Toyota, S.; Tsurumaki, E. Chem. Eur. J. 2019, 25, 6878.
[63]
Yamamoto, Y.; Tsurumaki, E.; Wakamatsu, K.; Toyota, S. Angew. Chem., Int. Ed. 2018, 57, 8199.
[64]
Zhan, S.-Z.; Li, J.-H.; Zhang, G.-H.; Li, M.-D.; Sun, S.; Zheng, J.; Ning, G.-H.; Li, M.; Kuang, D.-B.; Wang, X.-D.; Li, D. Chem. Commun. 2020, 56, 3325.
[65]
Stasyuk, O. A.; Stasyuk, A. J.; Sola, M.; Voityuk, A. A. Phys. Chem. Chem. Phys. 2021, 23, 2126.
[66]
Zhang, J.; Qiu, Z.; Zhao, C.; Lu, Y.; Li, W.; Liu, L.; Wang, C.; Tan, Y.; Wang, T. Nano Res. 2023, 16, 3372.
[67]
He, L.; Li, L.; Wang, S.-C.; Chan, Y.-T. Chem. Commun. 2023, 59, 11500.
[68]
Schultz, A.; Li, X.; McCusker, C. E.; Moorefield, C. N.; Castellano, F. N.; Wesdemiotis, C.; Newkome, G. R. Chem. Eur. J. 2012, 18, 11569.
[69]
Li, Z.; Luo, S.; Chen, M.; Yu, X.; Li, X. Acta Chim. Sinica 2023, 81, 1447 (in Chinese).
[69]
(李志凯, 罗思琪, 陈敏, 於秀君, 李霄鹏,, 化学学报, 2023, 81, 1447.)
[70]
Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Cush, R.; Russo, P. S.; Godínez, L. A.; Saunders, M. J.; Mohapatra, P. Chem. Eur. J. 2002, 8, 2946.
[71]
Xie, T.-Z.; Li, J.-Y.; Guo, Z.; Ludlow, J. M., III; Lu, X.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. Eur. J. Inorg. Chem. 2016, 1671.
[72]
Chakraborty, S.; Sarkar, R.; Endres, K.; Xie, T.-Z.; Ghosh, M.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. Eur. J. Org. Chem. 2016, 2016, 5091.
[73]
Liu, D.; Jiang, Z.; Wang, M.; Yang, X.; Liu, H.; Chen, M.; Moorefield, C. N.; Newkome, G. R.; Li, X.; Wang, P. Chem. Commun. 2016, 52, 9773.
[74]
Zhang, Z.; Ma, L.; Fang, F.; Hou, Y.; Lu, C.; Mu, C.; Zhang, Y.; Liu, H.; Gao, K.; Wang, M.; Zhang, Z.; Li, X.; Zhang, M. JACS Au 2022, 2, 1479.
[75]
Ju, H.; Tsuruoka, Y.; Hayano, M.; Lee, E.; Park, K.-M.; Ikeda, M.; Ishi-i, J.-i.; Kuwahara, S.; Habata, Y. Angew. Chem., Int. Ed. 2021, 60, 650.
[76]
Jiang, Z.; Zhao, H.; Wang, J.; Chen, B.; Lv, W.; Li, Y.; Dong, Q.; Liu, D.; Liu, W.; Wang, M.; Fu, F.; Hwang, S.-H.; Chen, M.; Wang, P. Chin. Chem. Lett. 2023, 34, 108334.
[77]
Elbert, T.; Ray, W. J.; Kowalik, Z. J.; Skinner, J. E.; Graf, K. E.; Birbaumer, N. Physiol. Rev. 1994, 74, 1.
[78]
Jiang, Z.; Liu, D.; Chen, M.; Wang, J.; Zhao, H.; Li, Y.; Zhang, Z.; Xie, T.; Wang, F.; Li, X.; Newkome, G. R.; Wang, P. iScience 2020, 23, 101064.
[79]
Li, C.; Li, R.; Xu, Z.; Li, J.; Zhang, X.; Li, N.; Zhang, Y.; Shen, Z.; Tang, H.; Wang, Y. J. Am. Chem. Soc. 2021, 143, 14417.
[80]
Jiang, Z.; Liu, W.; Wang, J.; Chen, B.; Wu, Z.; Fu, F.; Miao, R.; Ouyang, T.; Lv, W.; Huang, Y.; Liu, D.; Liu, Z.-Q.; Chen, M.; Wang, P. Inorg. Chem. 2023, 62, 8923.
[81]
Li, C.; Zhang, X.; Li, N.; Wang, Y.; Yang, J.; Gu, G.; Zhang, Y.; Hou, S.; Peng, L.; Wu, K.; Nieckarz, D.; Szabelski, P.; Tang, H.; Wang, Y. J. Am. Chem. Soc. 2017, 139, 13749.
[82]
Sarkar, R.; Xie, T.-Z.; Endres, K. J.; Wang, Z.; Moorefield, C. N.; Saunders, M. J.; Ghorai, S.; Patri, A. K.; Wesdemiotis, C.; Dobrynin, A. V.; Newkome, G. R. J. Am. Chem. Soc. 2020, 142, 5526.
[83]
Wang, J.; Jiang, Z.; Liu, W.; Wu, Z.; Miao, R.; Fu, F.; Yin, J.-F.; Chen, B.; Dong, Q.; Zhao, H.; Li, K.; Wang, G.; Liu, D.; Yin, P.; Li, Y.; Chen, M.; Wang, P. Angew. Chem., Int. Ed. 2023, 62, e20221423.
[84]
Jiang, Z.; Wang, J.; Zhang, H.; Liu, W.; Wu, Z.; Zhao, H.; Yin, J.-F.; Chen, B.; Li, Y.; Yin, P.; Chan, Y.-T.; Wang, K.; Chen, M.; Wang, P. Cell Rep. Phys. Sci. 2023, 4, 101293.
[85]
Goodall, W.; Williams, J. A. G. Chem. Commun. 2001, 2514.
[86]
Hofmeier, H.; Schubert, U. S. Chem. Soc. Rev. 2004, 33, 373.
[87]
Zhang, S.-Y.; Sun, H.-Y.; Wang, R.-G.; Meng, Y.-S.; Liu, T.; Zhu, Y.-Y. Dalton Trans. 2022, 51, 9888.
[88]
Yang, R.; Zhang, S.-Y.; Wang, R.-G.; Meng, Y.-S.; Liu, T.; Zhu, Y.-Y. Chinese J. Inorg. Chem. 2022, 38, 1477 (in Chinese).
[88]
(杨蕊, 张舒雅, 王润国, 孟银杉, 刘涛, 朱元元, 无机化学学报, 2022, 38, 1477.)
Outlines

/