Fault-tolerant Coded Quantum Chemical Distributed Calculation
Received date: 2023-11-13
Online published: 2024-01-23
Supported by
National Natural Science Foundation of China(22173114); National Natural Science Foundation of China(22333003); Strategic Priority Research Program of Chinese Academy of Sciences(XDB0500001); Youth Innovation Promotion Association of Chinese Academy of Sciences(2022168); Network and Information Foundation of Chinese Academy of Sciences(CAS-WX2021SF-0103-02); Project of Computer Network Information Center, Chinese Academy of Sciences(CNIC20230201)
With the rise of cutting-edge applications such as large-scale simulation and machine learning, distributed computing has become more and more an important means of computational research. However, distributed computing will still have some problems in the application of scientific computing, machine learning and other fields due to the hardware and software limitations caused by multiple nodes. In this paper, we apply coded distributed computing to the field of quantum chemistry, by drawing on the gradient coding scheme, on the one hand, to solve the problem of dropped nodes in distributed quantum chemical computation; on the other hand, to increase the automatic error correction capability of quantum chemical distributed computation, to reduce the manpower and resources consumed in the computation process, with a view to realizing the automated fault-tolerant quantum chemical computation. In addition, we also propose the computational idea of coded multiplexing, which can simply and effectively use more computational resources to perform distributed computation on a set fault-tolerant capacity. We applied this computational scheme to calculate the binding energy of P38 protein and ligand by artificially specifying the use of four computational nodes for each fragment and allowing one dropout node, and compared the results obtained using coded computation with the real results, and found that the error was extremely small and negligible, and the correct results could be obtained even in the case of one dropout node or one node being miscalculated. In order to verify whether this scheme is suitable for larger scale distributed quantum chemical computation, we further randomly selected 10 fragments on the basis of coded multiplexing and performed the computation with 40 nodes at the same time, and found that the obtained results are also very accurate. Finally we calculated the binding energy of the P38 protein to the ligand, and the results obtained were consistent with previous literature, demonstrating the accuracy of this scheme and its potential for application in automated fault-tolerant quantum chemical calculations.
Ning Li , Lina Xu , Guoyong Fang , Yingjin Ma . Fault-tolerant Coded Quantum Chemical Distributed Calculation[J]. Acta Chimica Sinica, 2024 , 82(2) : 138 -145 . DOI: 10.6023/A23110496
[1] | Brumfiel, G. Nature 2011, 469, 282. |
[2] | Zheng, T.-F.; Zhou, T.-Q.; Cai, Z.-P.; Wu, H.-J. J. Comput. Res. Dev. 2021, 58, 2187. (in Chinese) |
[2] | (郑腾飞, 周桐庆, 蔡志平, 吴虹佳, 计算机研究与发展, 2021, 58, 2187.) |
[3] | Yadwadkar, N. J.; Hariharan, B.; Gonzalez, J. E.; Katz, R. J. Mach. Learn. Res. 2016, 17, 1. |
[4] | Dean, J.; Barroso, L. A. Commun. ACM 2013, 56, 74. |
[5] | Li, S. Z.; Maddah-Ali, M. A.; Yu, Q.; Avestimehr, A. S. IEEE Trans. Inf. Theory 2018, 64, 109. |
[6] | Elkordy, A. R.; Li, S. Z.; Maddah-Ali, M. A.; Avestimehr, A. S. IEEE Trans. Commun. 2021, 69, 2773. |
[7] | Attia, M. A.; Tandon, R. IEEE Trans. Inf. Theory 2019, 65, 7325. |
[8] | Kianidehkordi, S.; Ferdinand, N.; Draper, S. C. IEEE Trans. Inf. Theory 2021, 67, 726. |
[9] | Yuan, C.-Y.; Xie, Z.-P.; Zhu, X.-R.; Qu, Z.-H.; Xu, Y.-Y. Comput. Sci. 2021, 48, 47. (in Chinese) |
[9] | (苑晨宇, 谢在鹏, 朱晓瑞, 屈志昊, 徐媛媛, 计算机科学, 2021, 48, 47.) |
[10] | Wang, J.; Cao, C. M.; Wang, J. P.; Lu, K. J.; Jukan, A.; Zhao, W. IEEE Trans. Cloud Comput. 2022, 10, 2817. |
[11] | Tandon, R.; Lei, Q.; Dimakis, A. G.; Karampatziakis, N. In Proceedings of the 34th International Conference on Machine Learning, Eds.: Precup, D.; Teh, Y. W., PMLR, New York, 2017, pp. 3368-3376. |
[12] | Esfahanizadeh, H.; Cohen, A.; Medard, M. In INFOCOM 2022-IEEE Conference on Computer Communications, IEEE, 2022, pp. 230-239. |
[13] | Tan, S.-Q.; Chen, L.; Wang, W.-D. J. Univ. Sci. & Tech. China 2023, 53, 1. (in Chinese) |
[13] | (谭思琪, 陈力, 王卫东, 中国科学技术大学学报, 2023, 53, 1.) |
[14] | Helmchen, G. Chem. Eur. J. 2023, 29, e202301488. |
[15] | Liu, G.-H.; Wu, L.-L.; Du, X.-H.; Luo, Y.-H.; Cao, S.-Y. Electronic Technology & Software Engineering 2023, 87. (in Chinese) |
[15] | (刘桂华, 武兰兰, 杜晓航, 罗寓洪, 曹书镒, 电子技术与软件工程, 2023, 87.) |
[16] | Yuan, C.-F.; Huang, Z.-P.; Hou, Y.-F.; Meng, Q.-R.; Fan, H.-Y.; Xu, J.-C.; Wang, Y.-Y.; Zhou, X. Energy and Energy Conservation 2022, 46. (in Chinese) |
[16] | (袁春峰, 黄战平, 侯炎飞, 孟庆茹, 范晗雨, 徐健聪, 王艺媛, 周兴, 能源与节能, 2022, 46.) |
[17] | Khodair, A. I.; Alzahrani, F. M.; Awad, M. K.; Al-Issa, S. A.; Al-Hazmi, G. H.; Nafie, M. S. J. Enzyme Inhib. Med. Chem. 2023, 38, 2163996. |
[18] | Zhang, Q. Q.; Hu, K.; Sun, H. D.; Puno, P. T. Nat. Prod. Bioprospect. 2023, 13, 12. |
[19] | Zochedh, A.; Chandran, K.; Priya, M.; Sultan, A. B.; Kathiresan, T. J. Mol. Struct. 2023, 1285, 135403. |
[20] | Golub, P.; Antalik, A.; Veis, L.; Brabec, J. J. Chem. Theory Comput. 2021, 17, 6053. |
[21] | Beran, P.; Matousek, M.; Hapka, M.; Pernal, K.; Veis, L. J. Chem. Theory Comput. 2021, 17, 7575. |
[22] | Rask, A. E.; Zimmerman, P. M. J. Chem. Phys. 2022, 156, 094110. |
[23] | Kitabayashi, A.; Ono, Y.; Taketsugu, T.; Sawamura, M.; Higashida, K. Chem. Eur. J. 2023, 29, e202301673. |
[24] | Liang, X.-F.; Jing, J.; Feng, X.; Zhao, Y.-Z.; Tang, X.-Y.; He, Y.; Zhang, L.-S.; Li, H.-F. Acta Chim. Sinica 2023, 81, 717. (in Chinese) |
[24] | (梁雪峰, 荆剑, 冯昕, 赵勇泽, 唐新员, 何燕, 张立胜, 李慧芳, 化学学报, 2023, 81, 717.) |
[25] | Wang, J.; Xiao, H.-M.; Xie, D.; Guo, Y.-R.; Pan, Q.-J. Acta Chim. Sinica 2023, 81, 1493. (in Chinese) |
[25] | (王娟, 肖华敏, 谢丁, 郭元茹, 潘清江, 化学学报, 2023, 81, 1493.) |
[26] | Zhang, X.; Wang, L. M.; Helwig, J.; Luo, Y. Z.; Fu, C.; Xie, Y. C.; Liu, M.; Lin, Y. C.; Xu, Z.; Yan, K. Q.; Adams, K.; Weiler, M.; Li, X. E.; Fu, T. F.; Wang, Y. C.; Yu, H. Y.; Xie, Y. Q.; Fu, X.; Strasser, A.; Xu, S. L.; Liu, Y.; Du, Y. Q.; Saxton, A.; Ling, H. Y.; Lawrence, H.; St?rk, H.; Gui, S. R.; Edwards, C.; Gao, N.; Ladera, A.; Wu, T. L.; Hofgard, E. F.; Tehrani, A. M.; Wang, R.; Daigavane, A.; Bohde, M.; Kurtin, J.; Huang, Q.; Phung, T.; Xu, M. K.; Joshi, C. K.; Mathis, S. V.; Azizzadenesheli, K.; Fang, A.; Aspuru-Guzik, A.; Bekkers, E.; Bronstein, M.; Zitnik, M.; Anandkumar, A.; Ermon, S.; Lio, P.; Yu, R.; Günnemann, S.; Leskovec, J.; Ji, H.; Sun, J. M.; Barzilay, R.; Jaakkola, T.; Coley, C. W.; Qian, X. N.; Qian, X. F.; Smidt, T.; Ji, S. W.; Arxiv 2023. doi: 10.48550/arXiv.2307.08423 |
[27] | Manathunga, M.; Aktulga, H. M.; Gotz, A. W.; Merz, K. M. J. Chem. Inf. Model. 2023, 63, 711. |
[28] | Google AI Quantum C. Science 2020, 369, 1084. |
[29] | Jia, W. L.; Wang, H.; Chen, M. H.; Lu, D. H.; Lin, L.; Car, R.; Weinan, E; Zhang, L. F. In SC20:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1-14. |
[30] | Seritan, S.; Bannwarth, C.; Fales, B. S.; Hohenstein, E. G.; Isborn, C. M.; Kokkila-Schumacher, S. I. L.; Li, X.; Liu, F.; Luehr, N.; Snyder, J. W.; Song, C. C.; Titov, A. V.; Ufimtsev, I. S.; Wang, L. P.; Martínez, T. J. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1494. |
[31] | Liu, J.; Yang, J. R.; Zeng, X. C.; Xantheas, S. S.; Yagi, K.; He, X. Nat. Commun. 2021, 12, 6141. |
[32] | Liu, J. F.; He, X. WIRES Comput. Mol. Sci. 2023, 13, e1650. |
[33] | Liu, J. F.; He, X.; Zhang, J. Z. H.; Qi, L. W. Chem. Sci. 2018, 9, 2065. |
[34] | Liu, J. F.; Lan, J. G.; He, X. J. Phys. Chem. A 2022, 126, 3926. |
[35] | Liu, J. F.; Liu, Y. Q.; Yang, J. R.; Zeng, X. C.; He, X. J. Phys. Chem. Lett. 2021, 12, 3379. |
[36] | He, X.; Zhang, J. Z. H. J. Chem. Phys. 2005, 122, 031103. |
[37] | He, X.; Zhang, J. Z. H. J. Chem. Phys. 2006, 124, 184703. |
[38] | He, X.; Zhu, T.; Wang, X. W.; Liu, J. F.; Zhang, J. Z. H. Acc. Chem. Res. 2014, 47, 2748. |
[39] | Jia, X. Y.; Wang, X. W.; Liu, J. F.; Zhang, J. Z. H.; Mei, Y.; He, X. J. Chem. Phys. 2013, 139, 214104. |
[40] | Liu, J. F.; Zhu, T.; Wang, X. W.; He, X.; Zhang, J. Z. H. J. Chem. Theory Comput. 2015, 11, 5897. |
[41] | Zhang, L.; Cheng, Z.; Li, W.; Li, S. Chin. J. Chem. Phys. 2022, 35, 167. |
[42] | Hong, B.; Fang, T.; Li, W.; Li, S. J. Chem. Phys. 2023, 158, 044117. |
[43] | Du, J.; Liao, K.; Ma, J.; Li, W.; Li, S. J. Chem. Theory Comput. 2022, 18, 7630. |
[44] | Liao, K.; Cheng, Z.; Li, Y.-Z.; Zhao, D.-B.; Li, W.; Li, S.-H. Chin. Sci. Bull. 2018, 63, 3427. (in Chinese) |
[44] | (廖康, 程正, 李云志, 赵东波, 李伟, 黎书华, 科学通报, 2018, 63, 3427.) |
[45] | Li, Y.; Wang, D.; Fu, F.; Xia, Q.; Li, W.; Li, S. J. Comput. Chem. 2022, 43, 704. |
[46] | Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Chem. Phys. Lett. 1999, 313, 701. |
[47] | Monteleone, S.; Fedorov, D. G. J. Chem. Inf. Model. 2022, 62, 3784. |
[48] | Fedorov, D. G. J. Comput. Chem., 2022, 43, 1094. |
[49] | Ma, Y. J.; Li, Z. Y.; Chen, X.; Ding, B. W.; Li, N.; Lu, T.; Zhang, B. H.; Suo, B. B.; Jin, Z. J. Comput. Chem. 2023, 44, 1174. |
[50] | Yuan, K.; Zhou, S.; Li, N.; Li, T. Y.; Ding, B. W.; Guo, D. H.; Ma, Y. J. arXiv:2401.09484 |
/
〈 |
|
〉 |