Article

Preparation of NiCe(x)/FLRC-TiO2 Catalyst and Its Performance in Hydrodeoxygenation

  • Qiang Zhang ,
  • Huan Wang ,
  • Shuai Wang ,
  • Yuanyuan Wang ,
  • Mei Zhang ,
  • Hua Song
Expand
  • College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China

Received date: 2023-12-29

  Online published: 2024-03-04

Supported by

National Natural Science Foundation of China(22278068)

Abstract

As the only renewable organic carbon source in nature, the conversion and utilization of biomass is of great significance. The bio-oil obtained from biomass pyrolysis has low calorific value, poor stability, high viscosity and high acidity due to the high content of oxygenated compounds. The hydrodeoxygenation (HDO) is considered as the most efficient technology to remove oxygen and the development of the efficient HDO catalysts remains a great challenge. In this paper, aimed to improve mass transfer rate and HDO intrinsic activity, a novel strategy of preparing a titanium dioxide (FLRC-TiO2) support with special morphology and radial pore structure was proposed. In addition, the supported metal-acid bifunctional NiCe(x)/FLRC-TiO2 catalyst (x is the atomic ratio of Ni and Ce) was prepared by introducing metal Ce to induce the acid active site on the basis of high hydrogenation activity metal Ni sites. The as-prepared catalysts were characterized by various methods. Using p-cresol as a model compound, the effects of different Ni/Ce ratios and reaction condition on the HDO performance of the catalysts were studied. The results show that the total acid amount of NiCe(1)/FLRC-TiO2 doped with the metal Ce was 148.7 μmol•g−1, which is significantly increased as compared to that of Ni/FLRC-TiO2 (45.3 μmol•g−1). The introduction of Ce can enhance the acidity of the catalyst and promote the hydrogen hydrolysis ability of the C—OH bond, thus improving the selectivity of cycloalkanes. Under the reaction conditions of 250 ℃, 3 MPa, 2 h, the selectivity to the target product methylcyclohexane (MCH) was significantly improved over the bimetallic NiCe(1)/FLRC-TiO2 (55.5%) compared to the monometallic Ni/FLRC-TiO2 (27.2%), demonstrating that introduction of Ce can greatly improve the efficiency of HDO. Increasing temperature and pressure, and extending reaction time are beneficial to HDO of p-cresol in the test range. The intersecting radial channels structure with flower-like morphology of FLRC-TiO2 was confirmed by transmission electron microscopy (TEM) characterization. Among the NiCe(x)/FLRC-TiO2, NiCe(1)/FLRC-TiO2 with atomic ratio of Ni and Ce of 1 exhibited excellent HDO performance. Under the reaction conditions of 275 ℃, 3 MPa, 2.5 h, the p-cresol was completely converted with the deoxidation products selectivity of 97.9%, and the selectivity of the target product MCH as high as 95.4%. The superior HDO performance of NiCe(1)/FLRC-TiO2 is attributed to the synergistic effect between metal site Ni and acid site Ce along with its special channel structure. The HDO reaction over NiCe(1)/FLRC-TiO2 was dominated by the hydrogenation (HYD) reaction pathway.

Cite this article

Qiang Zhang , Huan Wang , Shuai Wang , Yuanyuan Wang , Mei Zhang , Hua Song . Preparation of NiCe(x)/FLRC-TiO2 Catalyst and Its Performance in Hydrodeoxygenation[J]. Acta Chimica Sinica, 2024 , 82(3) : 287 -294 . DOI: 10.6023/A23120546

References

[1]
Li, Y. W.; Zhang, J. Y.; Shu, S. W.; Shao, Y. X.; Liu, Y.; Ke, Z. F. Chinese J. Org. Chem 2017, 37, 2187 (in Chinese).
[1]
(李胤午, 张鉴予, 舒思桅, 邵佑湘, 刘艳, 柯卓锋, 有机化学, 2017, 37, 2187.)
[2]
Zhou, J. Z.; Ji, W. H.; Cao, X. L.; He, W.; Fan, J. H.; Yuan, Y. P. J. Therm. Sci. 2023, 32, 542.
[3]
Amin, S. Energy Convers. Manage. 2009, 50, 1834.
[4]
Bhoi, P. R.; Ouedraogo, A. S.; Soloiu, V.; Quirino, R. Renew. Sust. Energ. Rev. 2020, 121, 109676.
[5]
Tian, Z. W.; Da, W. M.; Wang, L.; Yang, Y. S.; Wei, M. Acta Chim. Sinica 2022, 80, 1322 (in Chinese).
[5]
(田钊炜, 达伟民, 王雷, 杨宇森, 卫敏, 化学学报, 2022, 80, 1322.)
[6]
Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22 (in Chinese).
[6]
(郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
[7]
Wang, J.; Zhang, M.; Li, F.; Wang, H.; Chen, Y. G.; Song, H. New J. Chem. 2022, 46, 22672.
[8]
Zhu, T. H.; Liu, K.; Wang, H. Y.; Wang, J.; Li, F.; Wang, C. G.; Song, H. Fuel 2023, 331, 125663.
[9]
He, T.; Liu, X. X.; Ge, Y. Z.; Han, D. Z.; Li, J. Q.; Wang, Z. Q.; Wu, J. H. Catal. Commun. 2017, 102, 127.
[10]
Hamid, S. A.; Ambursa, M. M.; Sudarsanam, P.; Voon, L. H.; Bhargava, S. K. Catal. Commun. 2017, 94, 18.
[11]
Bykova, M. V.; Ermakov, D. Y.; Kaichev, V. V.; Bulavchenko, O. A.; Saraev, A. A.; Lebedev, M. Y.; Yakovlev, V. А. Appl. Catal., B 2012, 113, 296.
[12]
Guo, Q. J.; Wu, M.; Wang, K.; Zhang, L.; Xu, X. F. Ind. Eng. Chem. Res. 2015, 54, 890.
[13]
Pan, L. Y.; He, Y. L.; Niu, M. L.; Dan, Y.; Li, W. H. RSC Adv. 2019, 9, 21175.
[14]
Zhang, G. Y.; Ma, L. G.; Dong, Y. Y.; Dou, S. X.; Kong, X. J. J. Colloid Interf. Sci. 2023, 647, 188.
[15]
Wang, S.; Yang, L. D.; Zhu, T. H.; Jiang, N.; Li, F.; Wang, H.; Zhang, C. L.; Song, H. React. Chem. Eng. 2022, 7, 170.
[16]
Chagas, C. A.; Souza, E. F.; Manfro, R. L.; Landi, S. M.; Souza, M. M.; Schmal, M. Appl. Catal., B 2016, 182, 257.
[17]
Sreekantan, S.; Sreedharan, S.; Kirali, A. A. B.; Yadav, P.; Marimuthu, B. Biomass Convers. Biorefin. 2023, DOI: 10.1007/s13399-023-04781-x.
[18]
Wang, W. Y.; Li, L.; Tan, S.; Wu, K.; Zhu, G. H.; Liu, Y.; Xu, Y.; Yang, Y. Q. Fuel 2016, 179, 1.
[19]
Wang, W. Y.; Wu, K.; Liu, P. L.; Li, L.; Yang, Y. Q.; Wang, Y. Ind. Eng. Chem. Res. 2016, 55, 7598.
[20]
Guo, X. L.; Wang, W. Y.; Wu, K.; Huang, Y. P.; Shi, Q. Q.; Yang, Y. Q. Biomass Bioenerg. 2019, 125, 34.
Outlines

/