Original article

Theoretical Study on Energetic Materials Containing (Difluoramino)dinitromethyl Substituted Heteroaromatic Rings

  • Yongkang Cui ,
  • Shoufei Cheng ,
  • Lin Ling ,
  • Yuxue Li ,
  • Long Lu
Expand
  • a School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
    b Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2024-01-16

  Online published: 2024-03-04

Supported by

National Natural Science Foundation of China(22175197); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0590000)

Abstract

In recent decades, the development of traditional energetic materials has encountered a bottleneck. How to continue to improve the energy level and break the bottleneck has become an urgent problem in the field of energetic materials. Fluorine is a stronger oxidizing agent than oxygen, and theoretically the introduction of fluorine can further increase energy density. Thirteen kinds of energetic molecules containing (difluoramino)dinitromethyl substituted heteroaromatic rings were designed. To ensure the possibility of synthesis, all the structural designs are based on existing intermediates and could be transformed into target molecules through mature synthesis methodologies. The molecular structure, initial thermal decomposition mechanism and energy characteristics were studied theoretically with density functional theory (DFT) methods (B3LYP/6-311+G(d,p) and M06-2X/6-311+G(d,p)) using Gaussian16 program. By calculating the mechanism of the initial decomposition reaction, the trigger bond was determined to be one of the C—NO2 bonds in the (difluoramino)dinitromethyl group. Dynamic stability is evaluated by the energy barrier of the trigger bond breaking. The results show that most of these molecules have sufficient dynamic stability, the initial decomposition reaction barriers are around 30 kcal/mol. The relationship between the molecule structure and the dynamic stability is revealed. The carbon radical center in the transition state is connected with the strong electron-withdrawing groups (-NO2 and -NF2) and the heterocyclic ring with a certain electron-donating ability. This is a typical “push-pull” electronic structure, which makes the free radical particularly stable. Therefore, the homo-cleavage energy barrier of the trigger bond is determined by the stabilizing effect of heterocyclic rings on the methyl free radicals. The energy properties of these molecules were theoretically evaluated with nitrate ester plasticized polyether (NEPE) solid propellant formulations using EXPLO5 program. The results show that the specific impulse of one dynamic stable molecule is up to 280.1 s, which is about 8.4 s higher than that of the traditional HMX (Octogen) formulations.

Cite this article

Yongkang Cui , Shoufei Cheng , Lin Ling , Yuxue Li , Long Lu . Theoretical Study on Energetic Materials Containing (Difluoramino)dinitromethyl Substituted Heteroaromatic Rings[J]. Acta Chimica Sinica, 2024 , 82(4) : 377 -386 . DOI: 10.6023/A24010017

References

[1]
Bottaro, J. C. Chemistry & Industry 1996, 249.
[2]
Wang, W. J. J. Solid Rocket Technol. 2003, 26, 42. (in Chinese)
[2]
(王文俊, 固体火箭技术, 2003, 26, 42.)
[3]
Dong, H. S. Chin. J. Energ. Mater. 2004, A01, 1. (in Chinese)
[3]
(董海山, 含能材料, 2004, A01, 1.)
[4]
Sikder, A. K.; Sikder, N. J. Hazard. Mater. 2004, 112, 1.
[5]
Huang, H.; Wang, Z. S.; Huang, H. J.; Li, J. S. Chin. J. Explos. Propellants. 2005, 28, 9. (in Chinese)
[5]
(黄辉, 王泽山, 黄亨建, 李金山, 火炸药学报, 2005, 28, 9.)
[6]
Zhang, J. G.; Qin, J.; Klap?tke, T. M. Chemistry of High Energy Materials, Beijing Institute of Technology Press, Beijing, 2016. (in Chinese)
[6]
(张建国, 秦涧译, Thomas M. Klap?tke著, 高能材料化学, 北京理工大学出版社, 北京, 2016.)
[7]
Trache, D.; Klap?tke, T. M.; Maiz, L.; Abd-Elghany, M.; DeLuca, L. T. Green Chem. 2017, 19, 4711.
[8]
Huang, H. J.; Huang, H. Materials China 2018, 37, 889. (in Chinese)
[8]
(黄亨建, 黄辉, 中国材料进展, 2018, 37, 889.)
[9]
Tian, J. J.; Zhang, Q. H.; Li, J. S. Chin. J. Energ. Mater. 2016, 24, 1. (in Chinese)
[9]
(田均均, 张庆华, 李金山, 含能材料, 2016, 24, 1.)
[10]
Du, Y.; Qu, Z. K.; Wang, H. C.; Cui, H.; Wang, X. J. Explos. Pyrotech. 2021, 46, 860.
[11]
Peng, C. Z.; Fan, X. P.; Ren, X. X.; Zhang, P.; Peng, L. X. Winged Missiles Journal 2011, 7, 92. (in Chinese)
[11]
(彭翠枝, 范夕萍, 任晓雪, 张培, 彭玲霞, 飞航导弹, 2011, 7, 92.)
[12]
Dias, R. P.; Silvera, I. F. Science 2017, 355, 715.
[13]
Tian, D. Y.; Liu, J. H. Computational Energetics of Chemical propellants, Henan Science and Technology Press, Zhengzhou, 1999. (in Chinese)
[13]
(田德余, 刘剑洪, 化学推进剂计算能量学, 河南科学技术出版社, 郑州, 1999.)
[14]
Tang, W. Q.; Yang, R. J.; Li, J. M.; Ou, D.; Huo, Z. J. Solid Rocket Technol. 2020, 43, 679. (in Chinese)
[14]
(唐伟强, 杨荣杰, 李建民, 欧东, 霍正, 固体火箭技术, 2020, 43, 679.)
[15]
Yao, Q. F.; Mao, C. C.; Shao, Y. L.; Xia, M.; Luo, Y. J. Chin. J. Energ. Mater. 2022, 30, 804. (in Chinese)
[15]
(姚启发, 毛超超, 邵玉玲, 夏敏, 罗运军, 含能材料, 2022, 30, 804.)
[16]
Zhang, X. W.; Zhu, W. H; Xiao, H. M. Int. J. Quantum. Chem. 2009, 110, 1549.
[17]
Duan, B. H.; Liu, N.; Lu, X. M.; Mo, H. C.; Zhang, Q., Liu, Y. Z.; Wang, B. Z. Sci. Rep. 2020, 10, 18292.
[18]
Frazer, J. W. J. Inorg. Nucl. Chem. 1960, 16, 63.
[19]
Petry, R. C.; Freeman, J. P. J. Org. Chem. 1967, 32, 4034.
[20]
Zhai, L. J.; Zhang, J. L.; Zhang, J. R.; Wu, M. J.; Bi, F. Q.; Wang, B. Z. Chin. J. Org. Chem. 2020, 40, 1484. (in Chinese)
[20]
(翟连杰, 张俊林, 张家荣, 吴敏杰, 毕福强, 王伯周, 有机化学, 2020, 40, 1484.)
[21]
Guo, Z. H.; Yu, Q.; Chen, Y. C.; Liu, J.; Li, T.; Peng, Y. H.; Yi, W. B. Chem. Rec. 2023, 23, e202300108.
[22]
Dalinger, I. L.; Kormanov, A. V.; Suponitsky, K. Y.; Muravyev, N. V.; Sheremetev, A. B. Chem. Asian. J. 2018, 13, 1165.
[23]
Muravyev, N. V.; Suponitsky, K. Y.; Fedyanin, I. V.; Pivkina, A. N.; Dalinger, I. L. Chem. Eng. J. 2022, 449, 137816
[24]
Yu, Q.; Yin, P.; Zhang, J. H.; He, C. L.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2017, 139, 8816.
[25]
Yu, Q.; Chinnam, A. K.; Yin, P.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. A 2020, 8, 5859.
[26]
Tian, J. W.; Xiong, H. L.; Lin, Q. H.; Cheng, G. B.; Yang, H. W. New. J. Chem. 2017, 41, 1918.
[27]
Kettner, M. A.; Karaghiosoff, K.; Klapotke, T. M.; Suceska, M.; Wunder, S. Chem. Eur. J. 2014, 20, 7622.
[28]
Lu, T.; Wang, C. B.; Wang, G. L.; Wang, S. Q; Song, J.; Yin, H. Q; Fan, G. J.; Chen, F. X. New. J. Chem. 2019, 43, 13330.
[29]
Li, H.; Zhao, F. Q; Wang, B. Z.; Zhai, L. J.; Lai, W. P.; Liu, N. RSC Adv. 2015, 5, 21422.
[30]
Tang, Y. X.; Gao, H. X.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. RSC Adv. 2016, 6, 91477.
[31]
Zhang, J. H.; Zhang, Q. H.; Vo, T. T.; Parrish, D. A.; Shreeve, J. M., J. Am. Chem. Soc. 2015, 137, 1697.
[32]
Thottempudi, V.; Gao, H. X.; Shreeve, J. M. J. Am. Chem. Soc. 2011, 133, 6464.
[33]
Ma, Q.; Gu, H.; Huang, J. L.; Nie, F.; Fan, G. J.; Liao, L. Y.; Yang, W. New. J. Chem. 2018, 42, 2376.
[34]
Xue, Q.; Bi, F. Q.; Wang, Z. J.; Lian, P.; Zhang, J. R.; Wu, M. J.; Wang, B. Z. Chin. J. Explos. Propellants 2021, 44, 461. (in Chinese)
[34]
(薛琪, 毕福强, 王子俊, 廉鹏, 张家荣, 吴敏杰, 王伯周, 火炸药学报, 2021, 44, 461.)
[35]
Cao, W. L.; Dong, W. S.; Lu, Z. J.; Bi, Y. F.; Hu, Y.; Wang, T. W.; Zhang, C.; Li, Z. M.; Yu, Q. Y.; Zhang, J. G. Chem. Eur. J. 2021, 27, 13807.
[36]
See supporting information.
[37]
Ling, L.; Wang, J.; Li, J.; Li, Y. X.; Lu, L. Chin. J. Org. Chem. 2023, 43, 285. (in Chinese)
[37]
(凌琳, 王健, 李婧, 李玉学, 吕龙, 有机化学, 2023, 43, 285.)
[38]
Yang, J.; Ling, L.; Li, Y. X.; Lu, L. Acta Chim. Sinica 2023, 81, 328. (in Chinese)
[38]
(杨洁, 凌琳, 李玉学, 吕龙, 化学学报, 2023, 81, 328.)
[39]
Stepanov, R. S.; Kruglyakova, L. A.; Astakhov, A. M. Russ. J. Gen. Chem. 2007, 77, 1933.
[40]
Li, W. X. Chem. Bull. 1988, 5, 19. (in Chinese)
[40]
(李卫星, 化学通报, 1988, 5, 19.)
[41]
Peterson, J. P.; Winter, A. H. J. Am. Chem. Soc. 2019, 141, 12901.
[42]
Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. 1968, 48, 23.
[43]
Keshavarz, M. H.; Pouretedal, H. R. Thermochim. Acta 2004, 414, 203.
[44]
Su?eska, M. Explos. Pyrotech. 1999, 24, 280.
[45]
Hou, L. F. Composite Solid Propellants, Astronautical Publishing House, Beijing, 1994. (in Chinese)
[45]
(侯林法, 复合固体推进剂, 宇航出版社, 北京, 1994.)
[46]
Li, M.; Zhao, F. Q.; Xu, S. Y.; Yao, E. G.; Pei, Q.; Hao, H. X.; Jiang, H. Y. Chin. J. Explos. Propellants 2016, 39, 86. (in Chinese)
[46]
(李猛, 赵凤起, 徐司雨, 姚二岗, 裴庆, 郝海霞, 姜菡雨, 火炸药学报, 2016, 39, 86.)
[47]
Xie, W. X.; Zhao, Y.; Zhang, W.; Liu, Y. F.; Fan, X. Z.; Wang, B. Z.; Wei, H.; Yan, Q. L. Propellants Explos. Pyrotech. 2018, 43, 308.
[48]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
[49]
Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[50]
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
Outlines

/