Geometry Configuration and Bromo Substitution Effect of Terfluorenes on Amplified Spontaneous Emission Behaviors
Received date: 2024-01-12
Online published: 2024-03-11
Supported by
National Natural Science Foundation of China(22375100); Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province(2023FE001); State Key Laboratory of Organic Electronics and Information Displays(GZR2022010020)
Organic luminescent materials have garnered substantial attention within the scientific community owing to their notable attributes, encompassing cost-effectiveness, solution processability, mechanical flexibility, and easily adjustable optoelectronic properties. This multifaceted appeal has propelled their extensive adoption across a spectrum of applications, ranging from organic light-emitting diodes (OLEDs) and organic solid-state lasers (OSSL) to fluorescence imaging methodologies. Nevertheless, the advancement of organic electrically pumped lasers encounters significant hurdles. Organic gain media frequently grapple with challenges such as restricted charge carrier mobility, extended lifetimes of triplet states and polarons, broad absorption profiles, and inadequate stability, all of which pose substantial barriers to the practical realization of these laser systems. In response to these challenges, this study endeavors to introduce voluminous spatial hindrance groups as a prospective solution. These groups are strategically integrated to hinder intermolecular interactions among luminescent molecules, thereby alleviating the inherent luminescent quenching effects of the materials. This intervention not only augments luminescent efficiency but also fortifies the material's stability, addressing pivotal concerns within the discipline. The research methodology encompasses the design and synthesis of two distinct fluorene-based oligomers, namely HTF and ITF, each distinguished by unique spatial configurations. A meticulous examination of their amplified spontaneous emission (ASE) characteristics is conducted under diverse test conditions, incorporating dependencies on annealing temperature and film thickness. The minimum ASE thresholds for HTF and ITF are meticulously determined to be 6.67 and 12.35 µJ/cm2, respectively. Furthermore, comparative analyses between HTF and ITF illuminate the distinctive performance attributes of each oligomer. Notably, HTF exhibits superior thermal stability, diminished temperature dependence, and reduced reliance on film thickness in contrast to ITF. Additionally, an evaluation of dibromo-substituted derivatives unveils variable degrees of negative impact on the ASE characteristics of both oligomers following bromine atom substitution, with ITF demonstrating a more pronounced susceptibility. Overall, this comprehensive investigation not only yields valuable insights into the structural design and performance modulation of organic laser gain media but also presents promising avenues for optimizing their efficiency and stability within the domain of optically pumped organic lasers.
Quanyou Feng , Yunlong Zhang , Hao Li , Qianyi Li , Jianping Shen , Mengna Yu , Linghai Xie . Geometry Configuration and Bromo Substitution Effect of Terfluorenes on Amplified Spontaneous Emission Behaviors[J]. Acta Chimica Sinica, 2024 , 82(4) : 435 -442 . DOI: 10.6023/A24010012
[1] | Xu, J.; Lin, A.; Yu, X.; Song, Y.; Kong, M.; Qu, F.; Han, J.; Jia, W.; Deng, N. IEEE Photon. 2016, 28, 2133. |
[2] | Du, Q.; Liu, L.; Tang, R.; Ai, J.; Wang, Z.; Fu, Q.; Li, C.; Chen, Y.; Feng, X. Adv. Mater. Technol. 2021, 6, 2100122. |
[3] | Liu, Y.; Yang, W.; Xiao, S.; Zhang, N.; Fan, Y.; Qu, G.; Song, Q. ACS Nano 2019, 13, 10653. |
[4] | Restuccia, N.; Silipigni, L.; Cordaro, M.; Torrisi, L. Plasma Sci. Technol. 2019, 6, 1. |
[5] | Partovi, A.; Peale, D.; Wuttig, M.; Murray, C. A.; Zydzik, G.; Hopkins, L.; Baldwin, K.; Hobson, W. S.; Wynn, J.; Lopata, J.; Dhar, L.; Chichester, R.; Yeh, J. H. J. Appl. Phys. Lett. 1999, 75, 1515. |
[6] | Zhang, Q.; Zeng, W.-J.; Xia, R.-D. Acta Phys. Sin. 2015, 64, 094202. (in Chinese) |
[6] | (张琪, 曾文进, 夏瑞东, 物理学报, 2015, 64, 094202). |
[7] | Qian, Y.; Wei, Q.; Del Pozo, G.; Mroz, M. M.; Luer, L.; Casado, S.; Cabanillas-Gonzalez, J.; Zhang, Q.; Xie, L.; Xia, R.; Huang, W. Adv. Mater. 2014, 26, 2937. |
[8] | Soffer, B. H.; McFarland, B. B. Appl. Phys. Lett. 1967, 10, 266. |
[9] | Wang, L.; Wu, J.; Yan, C.; Yang, W.; Che, Z.; Xia, X.; Wang, X.; Liao, L. Chin. Chem. Lett. 2023, 109365. |
[10] | Zhuo, Z.; Wei, C.; Ni, M.; Cai, J.; Bai, L.; Zhang, H.; Zhao, Q.; Sun, L.; Lin, J.; Liu, W.; Ding, X.; Shen, K.; Huang, W. Dyes Pigm. 2022, 204, 110425. |
[11] | Karl, N. Phys. Status Solidi 1972, 13, 651. |
[12] | Moses, D. Appl. Phys. Lett. 1992, 60, 3215. |
[13] | Sandanayaka, A. S.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W. J.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Appl. Phys. Express 2019, 12, 061010. |
[14] | Sandanayaka, A. S.; Matsushima, T.; Bencheikh, F.; Yoshida, K.; Inoue, M.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Sci. Adv. 2017, 3, e1602570. |
[15] | Wang, K.; Zhao, Y. S. Chem 2021, 7, 3221. |
[16] | Lin, D.; Liu, J.; Zhang, H.; Qian, Y.; Yang, H.; Liu, L.; Ren, A.; Zhao, Y.; Yu, X.; Wei, Y.; Hu, S.; Li, L.; Li, S.; Sheng, C.; Zhang, W.; Chen, S.; Shen, J.; Liu, H.; Feng, Q.; Wang, S.; Xie, L.; Huang, W. Adv. Mater. 2022, 34, e2109399. |
[17] | Jiang, Y.; Liu, Y. Y.; Liu, X.; Lin, H.; Gao, K.; Lai, W. Y.; Huang, W. Chem. Soc. Rev. 2020, 49, 5885. |
[18] | Thomas, S. Nat. Electron. 2023, 6, 721. |
[19] | Baldo, M. A.; Holmes, R. J.; Forrest, S. R. Phys. Rev. B 2002, 66, 035321. |
[20] | Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; Heeger, A. J. Nat. Commun. 2015, 6, 10032. |
[21] | Feng, Q.; Xie, S.; Tan, K.; Zheng, X.; Yu, Z.; Li, L.; Liu, B.; Li, B.; Yu, M.; Yu, Y.; Zhang, X.; Xie, L.; Huang, W. ACS. Appl. Polym. Mater. 2019, 1, 2441. |
[22] | Troisi, A.; Orlandi, G. J. Phys. Chem. 2006, 110, 4065. |
[23] | Zhang, W.; Yan, Y.; Gu, J.; Yao, J.; Zhao, Y. S. Angew. Chem. Int. Ed. 2015, 54, 7125. |
[24] | Qiao, C.; Zhang, C.; Zhou, Z.; Yao, J.; Zhao, Y. S. CCS Chem. 2022, 4, 250. |
[25] | Ou, Q.; Peng, Q.; Shuai, Z. Nat. Commun. 2020, 11, 4485. |
[26] | Wu, C.; DeLong, M.; Vardeny, Z.; Ferraris, J. Synth. Met. 2003, 137, 939. |
[27] | Wu, L.; Casado, S.; Romero, B.; Oto?n, J. M.; Morgado, J.; Mu?ller, C.; Xia, R.; Cabanillas-Gonzalez, J. Macromolecules 2015, 48, 8765. |
[28] | Laquai, F.; Mishra, A. K.; Müllen, K.; Friend, R. H. Adv. Funct. Mater. 2008, 18, 3265. |
[29] | Aimono, T.; Kawamura, Y.; Goushi, K.; Yamamoto, H.; Sasabe, H.; Adachi, C. Appl. Phys. Lett. 2005, 86, 071110. |
[30] | Sandanayaka, A. S. D.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W. J.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.-C.; Adachi, C. Appl. Phys. Express 2019, 12, 061010. |
[31] | Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P.; Kim, Y.; Anthopoulos, T. Nat. Mater. 2008, 7, 158. |
[32] | Kim, H.; Schulte, N.; Zhou, G.; Müllen, K.; Laquai, F. Adv. Mater. 2011, 23, 894. |
[33] | Yu, M.-N.; Ou, C.-J.; Liu, B.; Lin, D.-Q.; Liu, Y.-Y.; Xue, W.; Lin, Z.-Q.; Lin, J.-Y.; Qian, Y.; Wang, S.-S.; Cao, H.-T.; Bian, L.-Y.; Xie, L.-H.; Huang, W. Chinese J. Polym. Sci. 2016, 35, 155. |
[34] | Huo, Y.; Fang, X.; Huang, B.; Zhang, K.; Nie, X.; Zeng, H. Chinese J. Org. Chem. 2012, 32, 1169. (in Chinese) |
[34] | (霍延平, 方小明, 黄宝华, 张焜, 聂晓李, 曾和平, 有机化学, 2012, 32, 1169). |
[35] | Feng, Q.-Y.; Li, B.; Zuo, Z.-Y.; Xie, S.-L.; Yu, M.-N.; Liu, B.; Wei, Y.; Xie, L.-H.; Xia, R.-D.; Huang, W. Chinese J. Polym. Sci. 2018, 37, 11. |
[36] | Chang, Y.; Cao, H.; Feng, Q.; Wei, Y.; Bian, L.; Ling, H.; Lin, D.; Xie, L.; Huang, W. Sci. Bull. 2021, 66, 4268. |
[37] | Xia, R.; Lai, W.-Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. C. Adv. Funct. Mater. 2009, 19, 2844. |
[38] | Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695. |
[39] | Choi, E. Y.; Mazur, L.; Mager, L.; Gwon, M.; Pitrat, D.; Mulatier, J. C.; Monnereau, C.; Fort, A.; Attias, A. J.; Dorkenoo, K.; Kwon, J. E.; Xiao, Y.; Matczyszyn, K.; Samoc, M.; Kim, D. W.; Nakao, A.; Heinrich, B.; Hashizume, D.; Uchiyama, M.; Park, S. Y.; Mathevet, F.; Aoyama, T.; Andraud, C.; Wu, J. W.; Barsella, A.; Ribierre, J. C. Phys. Chem. Chem. Phys. 2014, 16, 16941. |
[40] | Ribierre, J. C.; Zhao, L.; Inoue, M.; Schwartz, P. O.; Kim, J. H.; Yoshida, K.; Sandanayaka, A. S.; Nakanotani, H.; Mager, L.; Mery, S.; Adachi, C. Chem. Commun. 2016, 52, 3103. |
[41] | Zuo, Z.; Ou, C.; Ding, Y.; Zhang, H.; Sun, S.; Xie, L.; Xia, R.; Huang, W. J. Mater. Chem. C 2018, 6, 4501. |
[42] | Xu, W.; Yi, J.; Lai, W.-Y.; Zhao, L.; Zhang, Q.; Hu, W.; Zhang, X.-W.; Jiang, Y.; Liu, L.; Huang, W. Adv. Funct. Mater. 2015, 25, 4617. |
[43] | Navarro-Fuster, V.; Calzado, E. M.; Boj, P. G.; Quintana, J. A.; Villalvilla, J. M.; Díaz-García, M. A.; Trabadelo, V.; Juarros, A.; Retolaza, A.; Merino, S. Appl. Phys. Lett. 2010, 97, 171104. |
[44] | Gayathri, P.; Karthikeyan, S.; Moon, D.; Anthony, S. P. ChemistrySelect 2019, 4, 3884. |
[45] | Lin, J.-Y.; Zhu, W.-S.; Liu, F.; Xie, L.-H.; Zhang, L.; Xia, R.; Xing, G.-C.; Huang, W. Macromolecules 2014, 47, 1001. |
[46] | Lin, D.; Li, Y.; Zhang, H.; Zhang, S.; Gao, Y.; Zhai, T.; Hu, S.; Sheng, C.; Guo, H.; Xu, C.; Wei, Y.; Li, S.; Han, Y.; Feng, Q.; Wang, S.; Xie, L.; Huang, W. Research 2023, 6, 0027. |
[47] | Yoshida, K.; Gong, J.; Kanibolotsky, A. L.; Skabara, P. J.; Turnbull, G. A.; Samuel, I. D. Nature 2023, 621, 746. |
[48] | Gan, S.; Hu, S.; Li, X. L.; Zeng, J.; Zhang, D.; Huang, T.; Luo, W.; Zhao, Z.; Duan, L.; Su, S. J.; Tang, B. Z. ACS Appl. Mater. Interfaces 2018, 10, 17327. |
[49] | Zhou, Z.; Qiao, C.; Wang, K.; Wang, L.; Liang, J.; Peng, Q.; Wei, Z.; Dong, H.; Zhang, C.; Shuai, Z. Angew. Chem. Int. Ed. 2020, 59, 21677. |
[50] | Xu, M.; Wang, W.-B.; Bai, L.-B.; Yu, M.-N.; Han, Y.-M.; Lin, J.-Y.; Zhang, X.-W.; Ling, H.-F.; Lin, Z.-Q.; Huang, L.; Xie, L.-H.; Zhao, J.-F.; Wang, J.-P.; Huang, W. J. Mater. Chem. C 2018, 6, 7018. |
[51] | Xu, M.; Wei, C.; Zhang, Y.; Li, H.; Ma, J.; Lin, J.; Wang, S.; Xue, W.; Wei, Q.; Xie, L.; Huang, W. Chin. Chem. Lett. 2024, 35, 108279. |
[52] | Giebink, N. C.; Forrest, S. R. Phys. Rev. B 2009, 79, 073302. |
[53] | Calzado, E. M.; Villalvilla, J. M.; Boj, P. G.; Quintana, J. A.; Díaz-García, M. A. J. Appl. Phys. 2005, 97, 093103. |
[54] | Zhang, Z.-Y.; Xiao, Z.-H.; Zhu, S.; Zhang, Q.; Xia, R.-D.; Peng, J.-B. Acta Phys. Sin. 2023, 72, 214204. (in Chinese) |
[54] | (张志远, 肖子晗, 邾珊, 张琪, 夏瑞东, 彭俊彪, 物理学报, 2023, 72, 214204). |
/
〈 |
|
〉 |