Research Progress on Room-temperature Solid-state Lithium Metal Batteries with Poly(ethylene oxide)-based Solid Polymer Electrolytes
Received date: 2024-02-22
Online published: 2024-04-02
Supported by
National Key R&D Program of China(2023YFC2812700); National Natural Science Foundation of China(52073298); National Natural Science Foundation of China(52273221); Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020217); Qingdao New Energy Shandong Laboratory Open Project(QNESLOP202312)
Lithium-ion batteries are widely used in various fields of the national economy. However, those with liquid electrolytes may pose potential safety hazards, such as electrolytes leakage, volatilisation, combustion and even explosion. In contrast, solid-state lithium batteries with solid electrolyte exhibit high safety characteristics and have become a research and development hotspot in the scientific and industrial sectors. The design and development of solid-state electrolytes are crucial for solid-state lithium batteries. Poly(ethylene oxide) (PEO) solid polymer electrolyte (SPE) is an excellent electrolyte material for solid-state lithium-metal batteries (SSLBs) due to its high flexibility, excellent processability, good interfacial contact and compatibility with lithium-metal anode. However, the low room temperature ionic conductivity of PEO-based solid polymer electrolytes has seriously restricted its further development and application in the field of room temperature solid polymer lithium metal batteries. Through the continuous efforts of researchers at home and abroad, considerable progress has been made in the development of room-temperature solid-state lithium metal batteries SSLBs with PEO-based solid polymer electrolytes. A detailed description of the research progress room-temperature SSLBs with PEO-based solid-state polymer electrolytes is provided. The strategies covered include nanofiller composites, three-dimensional (3D) skeleton enhancement, molecular level modulation, blending with other polymers, and constructing fast ion transport channels inside the cathode. Finally, a systematic outlook on the challenges and future development trends room-temperature SSLBs with PEO-based solid polymer electrolyte are presented.
Shijie Zhang , Duo Wang , Haoran Cui , Yalan Zhang , Hao Zhang , Zhixiang Yuan , Pengxian Han , Shuyu Yao , Lang Huang , Jianjun Zhang , Guanglei Cui . Research Progress on Room-temperature Solid-state Lithium Metal Batteries with Poly(ethylene oxide)-based Solid Polymer Electrolytes[J]. Acta Chimica Sinica, 2024 , 82(6) : 690 -706 . DOI: 10.6023/A24020061
[1] | Chang, W.-Y.; Tan, Y.-Y.; Wu, J.-Y.; Liu, Y.-J.; Cai, J.-H.; Lai, C.-Y. Acta Chim. Sinica 2023, 81, 1708. (in Chinese) |
[1] | (常婉莹, 谭莹瑛, 吴静怡, 刘英杰, 蔡金海, 赖春艳, 化学学报, 2023, 81, 1708.) |
[2] | Zhang, C.-M.; Huang, Z.; Yang, Y.; Wang, D.; He, D.-N. Chin. J. Org. Chem. 2014, 34, 1347. (in Chinese) |
[2] | (张春明, 黄昭, 杨扬, 王丹, 何丹农, 有机化学, 2014, 34, 1347.) |
[3] | Zhang, Y.; Lai, J.; Gong, Y.; Hu, Y.; Liu, J.; Sun, C.; Wang, Z.-L. ACS Appl. Mater. Interfaces 2016, 8, 34309. |
[4] | Manthiram, A.; Yu, X.; Wang, S. Nat. Rev. Mater. 2017, 2, 1. |
[5] | Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J. Nano Energy 2017, 33, 363. |
[6] | Liao, M.-H.; Yang, D.-X.; Zhou, Y.; Wan, R.-J.; Liu, R.-P.; Wang, Q. Energy Storage Sci. Technol. 2022, 11, 3090. (in Chinese) |
[6] | (廖敏会, 杨大祥, 周洋, 万仁杰, 刘瑞平, 王强, 储能科学与技术, 2022, 11, 3090.) |
[7] | Kang, S.-S.; Yang, C.-X.; Yang, Z.-L.; Wu, N.-N.; Zhao, S.; Chen, X.-T.; Liu, F.-L.; Shi, B. Acta Chim. Sinica 2020, 78, 1441. (in Chinese) |
[7] | (康树森, 杨程响, 杨泽林, 吴宁宁, 赵姗, 陈晓涛, 刘富亮, 石斌, 化学学报, 2020, 78, 1441.) |
[8] | Zhao, R.-T.; Yang, J.-X.; Wang, B.; Ma, Z.; Pan, L.; Li, Y.-S. Chin. J. Chem. 2023, 41, 2493. |
[9] | Tian, S.-W.; Zhou, L.-X.; Zhang, B.-Q.; Zhang, J.-J.; Du, X.-F.; Zhang, H.; Hu, S.-J.; Yuan, Z.-X.; Han, P.-X.; Li, S.-L.; Zhao, W.; Zhou, X.-H.; Cui, G.-L. Acta Chim. Sinica 2022, 80, 1410. (in Chinese) |
[9] | (田宋炜, 周丽雪, 张秉乾, 张建军, 杜晓璠, 张浩, 胡思伽, 苑志祥, 韩鹏献, 李素丽, 赵伟, 周新红, 崔光磊, 化学学报, 2022, 80, 1410.) |
[10] | Chen, C.; Li, Q.; Li, Y.; Cui, Z.; Guo, X.; Li, H. ACS Appl. Mater. Interfaces 2018, 10, 2185. |
[11] | Hammami, A.; Raymond, N.; Armand, M. Nature. 2003, 424, 635. |
[12] | Zheng, Y.-S.; Wang, Y.-Y.; Gui, J.-Q.; Xie, Z.-H.; Xu, Y.; Cao, Q.-Y.; Xu, Y.-H.; Liu, Y.-L.; Liang, Y.-R. Energy Storage Sci. Technol. 2023, 12, 3064. (in Chinese) |
[12] | (郑衍森, 王泳茵, 桂久青, 谢卓豪, 徐越, 曹巧英, 徐悦华, 刘应亮, 梁业如, 储能科学与技术, 2023, 12, 3064.) |
[13] | Zhang, Z.; Zhao, Y.; Chen, S.; Xie, D.; Yao, X.; Cui, P.; Xu, X. J. Mater. Chem. A 2017, 5, 16984. |
[14] | Koerver, R.; Aygu?n, I.; Leichtwei?, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. R. Chem. Mater. 2017, 29, 5574. |
[15] | Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F. Energy Storage Mater. 2018, 10, 139. |
[16] | Zhang, J.-B.; Wang, Y.-P. Energy Environ. 2023, 4, 2. (in Chinese) |
[16] | (张钧波, 王娱飘, 能源与环境, 2023, 4, 2.) |
[17] | Zhai, Y.-F.; Yang, G.-M.; Hou, W.-Y.; Yao, J.-Y.; Wen, Z.-Y.; Song, S.-F.; Hu, N. Energy Storage Sci. Technol. 2021, 10, 905. (in Chinese) |
[17] | (翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁, 储能科学与技术, 2021, 10, 905.) |
[18] | Bao, J.; Qu, X.; Qi, G.; Huang, Q.; Wu, S.; Tao, C.; Gao, M.; Chen, C. Solid State Ionics 2018, 320, 55. |
[19] | Huang, Z.; Pang, W.; Liang, P.; Jin, Z.; Grundish, N.; Li, Y.; Wang, C.-A. J. Mater. Chem. A 2019, 7, 16425. |
[20] | Samsinger, R.; Schopf, S.; Schuhmacher, J.; Treis, P.; Schneider, M.; Roters, A.; Kwade, A. J. Electrochem. Soc. 2020, 167, 120538. |
[21] | Diddens, D.; Heuer, A.; Borodin, O. Macromolecules 2010, 43, 2028. |
[22] | Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem., Int. Ed. 2016, 55, 12538. |
[23] | Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. |
[24] | Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Nano Energy 2018, 52, 279. |
[25] | Zhen, R.; Chi, Q.-W.; Wang, X.-Y.; Yang, K.; Jiang, Y.-S.; Li, F.-F.; Xue, B. Acta Polym. Sin. 2017, 8, 1312. (in Chinese) |
[25] | (甄冉, 迟茜文, 王星元, 杨阔, 蒋引珊, 李芳菲, 薛兵, 高分子学报, 2017, 8, 1312.) |
[26] | Masoud, E. M.; El-Bellihi, A.-A.; Bayoumy, W.; Mousa, M. J. Alloys Compd. 2013, 575, 223. |
[27] | Wetjen, M.; Navarra, M. A.; Panero, S.; Passerini, S.; Scrosati, B.; Hassoun, J. ChemSusChem 2013, 6, 1037. |
[28] | Gu, D.-M.; Li, Y.-C.; Yang, L.; Xiao, Y. Acta Chim. Sinica 2010, 68, 2367. (in Chinese) |
[28] | (顾大明, 李已才, 杨柳, 肖宇, 化学学报, 2010, 68, 2367.) |
[29] | Stephan, A. M.; Nahm, K. Polymer 2006, 47, 5952. |
[30] | Chen, G.-R.; Shi, P.-F.; Bai, Y.-P.; Fan, T.-B. Acta Chim. Sinica 2004, 62, 377. (in Chinese) |
[30] | (陈国荣, 史鹏飞, 白永平, 范太炳, 化学学报, 2004, 62, 377.) |
[31] | Liu, L.; Chu, L.; Jiang, B.; Li, M. Solid State Ionics 2019, 331, 89. |
[32] | Zhou, Q.; Li, Q.; Liu, S.; Yin, X.; Huang, B.; Sheng, M. J. Power Sources 2021, 482, 228929. |
[33] | Wang, J.; Yang, J.; Shen, L.; Guo, Q.; He, H.; Yao, X. ACS Appl. Energy Mater. 2021, 4, 4129. |
[34] | Xu, L.; Li, J.; Deng, W.; Shuai, H.; Li, S.; Xu, Z.; Li, J.; Hou, H.; Peng, H.; Zou, G. Adv. Energy Mater. 2021, 11, 2000648. |
[35] | Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Adv. Sci. 2020, 7, 1903088. |
[36] | Luu, V. T.; Nguyen, Q. H.; Park, M. G.; Nguyen, H. L.; Seo, M.-H.; Jeong, S.-K.; Cho, N.; Lee, Y.-W.; Cho, Y.; Lim, S. N.; Jun, Y.-S.; Ahn, W. J. Mater. Res. Technol. 2021, 15, 5849. |
[37] | Fu, C.; Ma, Y.; Zuo, P.; Zhao, W.; Tang, W.; Yin, G.; Wang, J.; Gao, Y. J. Power Sources 2021, 496, 229861. |
[38] | Fu, C.; Zhang, X.; Cui, C.; Zhang, X.; Lou, S.; Ma, Y.; Huo, H.; Gao, Y.; Zuo, P.; Yin, G. Chem. Eng. J. 2022, 432, 134271. |
[39] | Zhang, X.; Fu, C.; Cheng, S.; Zhang, C.; Zhang, L.; Jiang, M.; Wang, J.; Ma, Y.; Zuo, P.; Du, C.; Gao, Y.; Yin, G.; Huo, H. Energy Storage Mater. 2023, 56, 121. |
[40] | Nguyen, H. L.; Luu, V. T.; Nguyen, M. C.; Kim, S. H.; Nguyen, Q. H.; Nungu, N. I.; Jun, Y. S.; Ahn, W. Adv. Funct. Mater. 2022, 32, 2207874. |
[41] | Lv, F.; Liu, K.; Wang, Z.; Zhu, J.; Zhao, Y.; Yuan, S. J. Colloid Interface Sci. 2021, 596, 257. |
[42] | Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Nano Lett. 2015, 15, 2740. |
[43] | Pan, L.; Sun, S.; Yu, G.; Liu, X. X.; Feng, S.; Zhang, W.; Turgunov, M.; Wang, Y.; Sun, Z. Chem. Eng. J. 2022, 449, 137682. |
[44] | Shi, K.; Zheng, D.; Guo, Z.; Yang, Z.; Zhang, W. Sustainable Energy Fuels 2022, 6, 5503. |
[45] | Fan, R.; Liu, C.; He, K.; Ho-Sum Cheng, S.; Chen, D.; Liao, C.; Li, R. K.-Y.; Tang, J.; Lu, Z. ACS Appl. Mater. Interfaces 2020, 12, 7222. |
[46] | Han, Q.; Wang, S.; Jiang, Z.; Hu, X.; Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 20514. |
[47] | Wang, W.-Z.; Song, R.-F.; Li, T; Xu, R.-N.; Zhao, Y.-C.; Zhang, L. J. Chin. Ceram. Soc. 2022, 50, 47. (in Chinese) |
[47] | (王维哲, 宋瑞丰, 李彤, 徐若楠, 赵元春, 张隆, 硅酸盐学报, 2022, 50, 47.) |
[48] | Han, Q.; Wang, S.; Kong, W.; Ji, B.; Wang, H. Chinese Journal of Chemical Engineering 2023, 54, 257. |
[49] | Li, F.; Su, B.; Shi, L.; Mua, J.; Xu, F.; Wang, J.; Yang, H.; Guo, Z. Ceram. Int. 2023, 49, 26604. |
[50] | Meng, X.; Zhang, D.; Mo, J.; Liu, L.; Yang, T.; Fan, Q.; Zhao, Q.; Zhou, R.; Zhang, M.; Hou, W.; Hu, W.; Zhang, W.; Jin, Y.; Jiang, B.; Chu, L.; Li, M. Appl. Surf. Sci. 2024, 648, 158962. |
[51] | Xia, Y.; Wang, Q.; Liu, Y.; Zhang, J.; Xia, X.; Huang, H.; Gan, Y.; He, X.; Xiao, Z.; Zhang, W. J. Colloid Interface Sci. 2023, 638, 908. |
[52] | Yang, T.-Q.; Wang, C.; Zhang, W.-K.; Xia, Y.; Gan, Y.-P.; Huang, H.; He, X.-P.; Zhang, J. Rare Met. 2022, 41, 1870. |
[53] | Wu, J.; Rao, Z.; Cheng, Z.; Yuan, L.; Li, Z.; Huang, Y. Adv. Energy Mater. 2019, 9, 1902767. |
[54] | Zhou, D.; He, Y.-B.; Liu, R.; Liu, M.; Du, H.; Li, B.; Cai, Q.; Yang, Q.-H.; Kang, F. Adv. Energy Mater. 2015, 5, 1500353. |
[55] | Xiao, L.-J.; Zhang, Y.-P.; Hong, M. Chin. J. Org. Chem. 2023, 43, 949. (in Chinese) |
[55] | (肖丽娟, 张艳平, 洪缪, 有机化学, 2023, 43, 949.) |
[56] | Whiteley, J. M.; Taynton, P.; Zhang, W.; Lee, S. H. Adv. Mater. 2015, 27, 6922. |
[57] | Qi, F.; Sun, Z.; Fan, X.; Wang, Z.; Shi, Y.; Hu, G.; Li, F. Adv. Energy Mater. 2021, 11, 2100387. |
[58] | Wei, Y.; Liu, T. H.; Zhou, W.; Cheng, H.; Liu, X.; Kong, J.; Shen, Y.; Xu, H.; Huang, Y. Adv. Energy Mater. 2023, 13, 2203547. |
[59] | Xue, C.; Jin, D.; Nan, H.; Wei, H.; Chen, H.; Xu, S. J. Power Sources 2020, 449, 227548. |
[60] | Zou, L.; Shi, K.; Liu, H.; Wu, Y.; Xu, T.; Wang, Q.; Chen, Z.; Yang, Z.; Song, R.; Su, J.; Zhang, W. Chem. Eng. J. 2023, 465, 142794. |
[61] | Liu, Y.; Zhao, Y.; Lu, W.; Sun, L.; Lin, L.; Zheng, M.; Sun, X.; Xie, H. Nano Energy 2021, 88, 106205. |
[62] | Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.-M.; Li, F. Adv. Funct. Mater. 2020, 30, 2007172. |
[63] | Naderkhani, N.; Rostami, S.; Mokhtari, Z.; Mollavali, M.; Nourany, M. Polym. Adv. Technol. 2024, 35, 6319. |
[64] | Ma, J.; Zhong, G.; Shi, P.; Wei, Y.; Li, K.; Chen, L.; Hao, X.; Li, Q.; Yang, K.; Wang, C.; Lv, W.; Yang, Q.-H.; He, Y.-B.; Kang, F. Energy Environ. Sci. 2022, 15, 1503. |
[65] | Wang, J.; Yan, X.; Zhang, Z.; Guo, R.; Ying, H.; Han, G.; Han, W.-Q. ACS Appl. Mater. Interfaces. 2020, 12, 41323. |
[66] | Xue, Z.; He, D.; Xie, X. J. Mater. Chem. A 2015, 3, 19218. |
[67] | Qu, X.-X.; Guo, Y.; Liu, X.-K. Chin. J. Chem. 2022, 40, 2559. |
/
〈 |
|
〉 |