Utilizing Planar σ-Aromaticity to Enhance Electron Transport Abilities
Received date: 2024-01-20
Online published: 2024-04-03
Supported by
Natural Science Foundation of Hubei Province of China(2022CFC007)
In organic chemistry, aromaticity is a fundamental concept. The aromaticity of traditional aromatic compounds usually comes from the high delocalization of π-electrons on the upper and lower planes of the ring, while σ-aromaticity mainly comes from the intramolecular σ bond and orbital overlap, both of which can affect the electron transport capacity of the molecule. In this study, density functional theory combined with non-equilibrium Green's function (DFT+NEGF) method are used to systematically investigate the aromaticity and electronic transport properties of benzene, thiophene, furan, and their derivatives. The computational results reveal that both π-aromaticity and σ-aromaticity have pronounced effects on molecular electronic transport, where σ-aromaticity shows a positive correlation with electron transmission, whereas π-aromaticity displays a negative correlation. The charge transfer properties of diphenyl dithiol (DB), dithiophene dithiol (DT) and difuran dithiol (DF) molecules containing two aromatic rings are significantly influenced by molecular planarization. Moreover, the furan ring in DF exhibits a larger NICS(1)zz value than the thiophene ring in DT. Furthermore, aromatic compounds typically exhibit a better coplanar trend. The molecular design strategy involving the modification of DT and DF molecules with F atom generates intramolecular F…S and F…O non-covalent interactions, which significantly enhance molecular planarity and rigidity. Meanwhile, the virtual five-membered ring structures containing intramolecular F…S and F…O interactions have σ-aromaticity characteristics, effectively promoting electron transport along F…S and F…O pathways, thereby improving the electron transport capacity. This research contributes to further understanding of the intrinsic relationship between molecular aromaticity and electronic transport capacity, and provides strategies for designing more efficient electronic devices in the future.
Key words: aromaticity; electron transport; planarity; intramolecular interaction; DFT+NEGF
Zhiye Wang , Bohuai Xiao . Utilizing Planar σ-Aromaticity to Enhance Electron Transport Abilities[J]. Acta Chimica Sinica, 2024 , 82(5) : 520 -526 . DOI: 10.6023/A24010023
| [1] | Zahedi, E.; Pangh, A. Superlattices Microstruct. 2011, 50, 386. |
| [1] | Yin, X.; Zang, Y.; Zhu, L.; Low Jonathan, Z.; Liu, Z.-F.; Cui, J.; Neaton Jeffrey, B.; Venkataraman, L.; Campos Luis, M. Sci. Adv. 2018, 3, eaao2615. |
| [2] | Ramos-Berdullas, N.; Gra?a, A. M.; Mandado, M. Theor. Chem. Acc. 2015, 134, 20. |
| [3] | Quinn, J. R.; Fross, F. W. Jr.; Venkataraman, L.; Hybertsen, M. S.; Breslow, R. J. Am. Chem. Soc 2007, 129, 6714. |
| [4] | Chen, W.; Li, H.; Widawsky, J. R.; Appayee, C.; Venkataraman, L.; Breslow, R. J. Am. Chem. Soc. 2014, 136, 918. |
| [5] | Mahendran, A.; Gopinath, P.; Breslow, R. Tetrahedron Lett. 2015, 56, 4833. |
| [6] | Breslow, R.; Fross, F. W. Jr. J. Phys. Condens. Matter. 2008, 20, 374104. |
| [7] | Xie, Z.; Ji, X.-L.; Song, Y.; Wei, M.-Z.; Wang, C.-K. Chem. Phys. Lett. 2015, 639, 131. |
| [8] | Zdetsis, A. D.; Economou, E. N. J. Phys. Chem. C 2016, 120, 29463. |
| [9] | Pauly, F.; Viljas, J. K.; Cuevas, J. C.; Sch?n, G. Phys. Rev. B 2008, 77, 155312. |
| [10] | Yang, Y.; Gantenbein, M.; Alqorashi, A.; Wei, J.; Sangtarash, S.; Hu, D.; Sadeghi, H.; Zhang, R.; Pi, J.; Chen, L.; Huang, X.; Li, R.; Liu, J.; Shi, J.; Hong, W.; Lambert, C. J.; Bryce, M. R. J. Phys. Chem. C 2018, 122, 14965. |
| [11] | Zhang, G.-P.; Xie, Z.; Song, Y.; Wei, M.-Z.; Hu, G.-C.; Wang, C.-K. Org. Electron. 2017, 48, 29. |
| [12] | Emberly, E. G.; Kirczenow, G. Phys. Rev. Lett. 2003, 91, 188301. |
| [13] | Ke, S.; Baranger, H. U.; Yang, W. J. Chem. Phys. 2005, 122, 3482. |
| [14] | Zhu, C.-C.; Guo, K.-P.; Liu, W.-B.; He, Y.-B.; Li, Z.-M.; Gao, X.-C.; Deng, F.-J.; Wei, B. Opt. Mater. 2013, 35, 2095. |
| [15] | Yuan, S.; Dai, C.; Weng, J.; Mei, Q.; Ling, Q.; Wang, L.; Huang, W. J. Phys. Chem. A 2011, 115, 4535. |
| [16] | Yu, C.; Zhao, J.; Liu, H. Chem. J. Chinese U. 2009, 30, 33 (in Chinese). |
| [16] | (余翠, 赵健伟, 刘洪梅, 高等学校化学学报, 2009, 30, 33.) |
| [17] | Ren, L.; Han, Y.; Hou, X.; Ni, Y.; Wu, J. Chem 2021, 7, 3442. |
| [18] | Alonso, M.; Herradón, B. Chem. Eur. J. 2007, 13, 3913. |
| [19] | Solà, M. Nat. Chem. 2022, 14, 585. |
| [20] | Hua, Y.; Zhang, H.; Xia, H. Chinese J. Org. Chem. 2018, 38, 11 (in Chinese). |
| [20] | (华煜晖, 张弘, 夏海平, 有机化学, 2018, 38, 11.) |
| [21] | Krygowski, T. M.; Ste?pień, B. T. Chem. Rev. 2005, 105, 3482. |
| [22] | Yang, Y.; Liu, J.; Yan, R.; Wu, D.; Tian, Z. Chem. J. Chinese U. 2015, 36, 9 (in Chinese). |
| [22] | (杨扬, 刘俊扬, 晏润文, 吴德印, 田中群, 高等学校化学学报, 2015, 36, 9.) |
| [23] | Cheng, N.; Chen, F.; Durkan, C.; Wang, N.; He, Y.; Zhao, J. Phys. Chem. Chem. Phys. 2018, 20, 28860. |
| [24] | Yuan, S.; Zhou, Y.; Gao, T.; Chen, L.; Xu, W.; Duan, P.; Wang, J.; Pan, Z.; Tang, C.; Yang, Y.; Huang, R.; Xiao, Z.; Hong, W. Chin. Chem. Lett. 2024, 35, 108404. |
| [25] | Xiao, B.; Dong, J.; Wang, Z.; Wang, X.; Sun, M.; Guo, J.; Qian, G.; Li, Y.; Chang, S. ChemPhysChem 2022, 23, e202100833. |
| [26] | Cheng, N.; Zhang, L.; Durkan, C.; Wang, N.; Du, B.; Zhao, J.; He, Y. J. Phys. Chem. C 2020, 124, 21137. |
| [27] | He, Y.; Cheng, N.; Zhao, J. Acta Chim. Sinica 2017, 75, 893 (in Chinese). |
| [27] | (贺园园, 程娜, 赵健伟, 化学学报, 2017, 75, 893.) |
| [28] | Niu, X.; Qi, Y. Acta Chim. Sinica 2008, 66, 652 (in Chinese). |
| [28] | (牛秀明, 齐元华, 化学学报, 2008, 66, 652.) |
| [29] | Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Org. Lett. 2006, 8, 863. |
| [30] | Wu, W.; Ma, B.; Wu, J. I-Chia; Schleyer, P. v. R.; Mo, Y. Chem. Eur. J. 2009, 15, 9730. |
| [31] | Wu, J.; Liu, X.; Hao, Y.; Chen, H.; Su, P.; Wu, W.; Zhu, J. Chem. Eur. J. 2018, 13, 3691. |
| [32] | Cai, Z.; Lo, W. Y.; Zheng, T.; Li, L.; Zhang, N.; Hu, Y.; Yu, L. J. Am. Chem. Soc. 2016, 138, 10630. |
| [33] | Yan, R.; Jin, X.; Guan, S.; Zhang, X.; Pang, R.; Tian, Z..; Wu, D.; Mao, B. J. Phys. Chem. C 2016, 120, 11820. |
| [34] | Kiguchi, M.; Fujii, S. Bull. Chem. Soc. Jpn. 2017, 90, 1. |
| [35] | Krygowski, T. M.; Cyra?ski, M. K.; Czarnocki, Z.; H?felinger, G.; Katritzky, A. R. Tetrahedron 2000, 56, 1783. |
| [36] | Mishchenko, A.; Vonlanthen, D.; Meded, V.; Burkle, M.; Li, C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.; Mayor, M.; Wandlowski, T. Nano Lett. 2010, 10, 156. |
| [37] | Liu, Y.; Yuan, J.; Zou, Y.; Li, Y. Acta Chim. Sinica 2017, 75, 257 (in Chinese). |
| [37] | (刘晔, 袁俊, 邹应萍, 李永舫, 化学学报, 2017, 75, 257.) |
| [38] | Milov, A. A.; Minyaev, R. M.; Minkin, V. I. J. Phys. Chem. A 2011, 115, 12973. |
| [39] | Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Chem. Rev. 2017, 117, 10291. |
| [40] | Cheng, Y.; Qi, Y.; Tang, Y.; Zheng, C.; Wan, Y.; Huang, W.; Chen, R. J. Phys. Chem. Lett. 2016, 7, 3609. |
| [41] | Wang, Z.; Huang, M.; Dong, J.; Wang, X.; Li, Y.; Sun, M.; Chang, S. J. Phys. Chem. C 2023, 127, 2518. |
| [42] | Haque, A.; Alenezi, K. M.; Khan, M. S.; Wong, W.-Y.; Raithby, P. R. Chem. Soc. Rev. 2023, 52, 454. |
| [43] | Ma, J.; Shi, Y.; Wang, Z.; Wang, X.; Li, Y.; Sun, M.; Guo, J.; Qian, G.; Chang, S. Chem. Commun. 2022, 58, 3298. |
| [44] | Zhang, M.; Liu, Z.; Tian, W.; Liu, D.; Ge, X. Acta Chim. Sinica 2011, 69, 1509 (in Chinese). |
| [44] | (张敏, 刘子忠, 田维全, 刘东升, 葛湘巍, 化学学报, 2011, 69, 1509.) |
| [45] | Venkataraman, L.; Park, Y. S.; Whalley, A. C.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2007, 7, 502. |
/
| 〈 |
|
〉 |