Reactivities of Nonsymmetric PNN Pincer Cobalt Complex Under Reductive Conditions
Received date: 2024-02-22
Online published: 2024-04-10
Supported by
National Natural Science Foundation of China(21988101)
Nonsymmetric pincer complexes have received much attention due to their hemilability and more easily modulated spatial and electronic effects. However, their synthesis and reactivity studies remain considerably limited in comparison to symmetric pincer complexes. Common strategies to enhance the reactivity of complexes, such as reducing coordination sites or lowering metal center valences, invariably complicate synthesis. In this work, employing the strategy of introducing reducing agents, the PNNCoCl (1) (PNN: [6-(tBu2PN)C5H3N-2-(3-Mes)C3H2N2]) reacts with various small molecules to yield a variety of nonsymmetric pincer cobalt complexes, which were characterized by single-crystal X-ray diffractometry analysis and spectroscopy. The reaction of PNNCoCl, potassium graphite (or KHBEt3) with 1 equiv. of CNXyl (2,6-dimethylphenyl isocyanide) or carbon monoxide successfully yielded the monovalent cobalt complexes 2 (PNNCoCNXyl) and 3 (PNNCoCO) in 64% and 41% yields, respectively. Moreover, the reaction of complex 1 with N-heterocyclic carbene (1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene), involving C—H bond cleavage and Co—C bond formation, afforded the corresponding divalent cobalt complex 4. Furthermore, by using different reducing agents, we achieved the modulation of the selective reaction of azobenzene C—H or N=N bonds. When KC8 (potassium graphite) was used as the reducing agent, the reaction of PNNCoCl and azobenzene in tetrahydrofuran afforded the azobenzene C—H bond-breaking product 5 in 53% yield. The cobalt atom is pentacoordinate in a tetragonal pyramid geometry. The N—N lengths of 0.12835(17) nm in complex 5 are in the range of normal N=N double bonds (0.122~0.130 nm). In contrast, the reaction of 1 with azobenzene in the presence of KHBEt3 gave the cobalt complex PNNCoNHPh (6), as confirmed by X-ray diffraction analysis. The structure suggests N=N double bond cleavage of azobenzene in the formation of the aniline complex. The N—H stretching bands of 6 were recorded at 3131 cm−1, and the solution magnetic moment was µeff=2.2 µB. In addition, the treatment of complex 1 with 3,5-di-tert-butyl-o-benzoquinone in the presence of 1.2 equiv. of KC8 gave rise to the cobalt complex 7. X-ray diffraction analysis of 7 revealed that the PNN ligand and o-benzoquinone parts are linked by forming a P—O single bond. The o-benzoquinone was reduced to the catechol ion. Complex 7 exhibits a high-spin electronic structure (S = 3/2), as evidenced by the solution magnetic moment of 4.0 µB.
Yuanjin Chen , Dajiang Huang , Xianghui Shi , Zhenfeng Xi , Junnian Wei . Reactivities of Nonsymmetric PNN Pincer Cobalt Complex Under Reductive Conditions[J]. Acta Chimica Sinica, 2024 , 82(5) : 471 -476 . DOI: 10.6023/A24020060
[1] |
(a) Morales-Morales, D. Pincer Compounds: Chemistry and Applications, Elsevier, Amsterdam, 2018.
|
[1] |
(b) Junge, K.; Papa, V.; Beller, M. Chem.-Eur. J. 2019, 25, 122.
|
[1] |
(c) Mukherjee, A.; Milstein, D. ACS Catal. 2018, 8, 11435.
|
[2] |
(a) Geier, S. J.; Vogels, C. M.; Melanson, J. A.; Westcott, S. A. Chem. Soc. Rev. 2022, 51, 8877.
|
[2] |
(b) Fan, W. W.; Li, L.; Zhang, G. Q. J. Org. Chem. 2019, 84, 5987.
|
[2] |
(c) Tamang, S. R.; Findlater, M. Molecules 2019, 24, 3194.
|
[2] |
(d) Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
|
[2] |
(e) Zuo, Z.; Wen, H.; Liu, G.; Huang, Z. Synlett 2018, 29, 1421.
|
[3] |
(a) Wen, H.; Liu, G.; Huang, Z. Coord. Chem. Rev. 2019, 386, 138.
|
[3] |
(b) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
|
[3] |
(c) Du, X.; Huang, Z. ACS Catal. 2017, 7, 1227.
|
[3] |
(d) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290.
|
[4] |
(a) González-Sebastián, L.; Reyes-Sanchez, A.; Morales-Morales, D. Organometallics 2023, 42, 2426.
|
[4] |
(b) Liu, S.; Zou, L.-H.; Wang, X.-M. Chin. J. Org. Chem. 2023, 43, 1713 (in Chinese).
|
[4] |
(刘双, 邹亮华, 王晓明, 有机化学, 2023, 43, 1713.)
|
[4] |
(c) Borthakur, I.; Sau, A.; Kundu, S. Coord. Chem. Rev. 2022, 451, 214257.
|
[4] |
(d) Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Chem. Rev. 2019, 119, 2876.
|
[4] |
(e) Alig, L.; Fritz, M.; Schneider, S. Chem. Rev. 2019, 119, 2681.
|
[4] |
(f) Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2018, 47, 1459.
|
[4] |
(g) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
|
[5] |
For selected examples, see: (a) Qi, X.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. Dalton Trans. 2018, 47, 2581.
|
[5] |
(b) Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347 (in Chinese).
|
[5] |
(顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)
|
[5] |
(c) Kumar, L. M.; Bhat, B. R. J. Organomet. Chem. 2017, 827, 41.
|
[5] |
(d) Neely, J. M.; Bezdek, M. J.; Chirik, P. J. ACS Cent. Sci. 2016, 2, 935.
|
[5] |
(e) Xiong, Z.; Li, X.; Zhang, S.; Shi, Y.; Sun, H. Organometallics 2016, 35, 357.
|
[6] |
For reviews, see: (a) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
|
[6] |
For selected papers, see: (b) Pabst, T. P.; Chirik, P. J. J. Am. Chem. Soc. 2022, 144, 6465.
|
[6] |
(c) Lee, B.; Pabst, T. P.; Chirik, P. J. Organometallics 2021, 40, 3766.
|
[6] |
(d) Pabst, T. P.; Quach, L.; MacMillan, K. T.; Chirik, P. J. Chem 2021, 7, 237.
|
[6] |
(e) Arevalo, R.; Pabst, T. P.; Chirik, P. J. Organometallics 2020, 39, 2763.
|
[6] |
(f) Pabst, T. P.; Obligacion, J. V.; Rochette, é.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2019, 141, 15378.
|
[7] |
For reviews, see: (a) Chirik, P. J. Angew. Chem., Int. Ed. 2017, 56, 5170.
|
[7] |
For selected papers, see: (b) Schmidt, V. A.; Hoyt, J. M.; Margulieux, G. M.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 7903.
|
[7] |
(c) Langlotz, B. K.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2008, 47, 4670.
|
[8] |
(a) Tanabe, Y.; Nishibayashi, Y. Chem. Soc. Rev. 2021, 50, 5201.
|
[8] |
(b) Kim, S.; Loose, F.; Chirik, P. J. Chem. Rev. 2020, 120, 5637.
|
[8] |
(c) Chalkley, M. J.; Drover, M. W.; Peters, J. C. Chem. Rev. 2020, 120, 5582.
|
[8] |
(d) Lv, Z.-J.; Wei, J.; Zhang, W.-X.; Chen, P.; Deng, D.; Shi, Z.-J.; Xi, Z. Natl. Sci. Rev. 2020, 7, 1564.
|
[8] |
(e) Tanabe, Y.; Nishibayashi, Y. R. Coord. Chem. Rev. 2019, 389, 73.
|
[8] |
(f) Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733 (in Chinese).
|
[8] |
(李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.)
|
[9] |
(a) Fu, L.-R.; Wang, Y.-B.; Jiang, H.; Hao, X.-Q.; Song, M.-P. Chin. J. Org. Chem. 2022, 42, 3530 (in Chinese).
|
[9] |
(付联荣, 王艳冰, 姜辉, 郝新奇, 宋毛平, 有机化学, 2022, 42, 3530.)
|
[9] |
(b) Wang, Z.; Solan, G. A.; Zhang, W.; Sun, W.-H. Coord. Chem. Rev. 2018, 363, 92.
|
[9] |
(c) Ma, Z.; Yang, W.; Sun, W.-H. Chin. J. Chem. 2017, 35, 531.
|
[9] |
(d) Small, B. L. Acc. Chem. Res. 2015, 48, 2599.
|
[9] |
(e) Ma, J.; Feng, C.; Wang, S.; Zhao, K.-Q.; Sun, W.-H.; Redshaw, C.; Solan, G. A. Inorg. Chem. Front. 2014, 1, 14.
|
[9] |
(f) Bianchini, C.; Giambastiani, G.; Luconi, L.; Meli, A. Coord. Chem. Rev. 2010, 254, 431.
|
[9] |
(g) Bianchini, C.; Giambastiani, G.; Rios, I. G.; Mantovani, G.; Meli, A.; Segarra, A. M. Coord. Chem. Rev. 2006, 250, 1391.
|
[10] |
(a) Pattanaik, S.; Kumar, A.; Gunanathan, C. Chem. Commun. 2023, 59, 1853.
|
[10] |
(b) Gao, S.-Q.; Liu, C.-J.; Yang, J.-F.; Zhang, J.-L. Chin. J. Org. Chem. 2023, 43, 1559 (in Chinese).
|
[10] |
(高师泉, 刘闯军, 杨俊锋, 张俊良, 有机化学, 2023, 43, 1559.)
|
[11] |
Zhou, H.; Sun, H.; Zhang, S.; Li, X. Organometallics 2015, 34, 1479.
|
[12] |
(a) Park, Y.; Semproni, S. P.; Zhong, H.; Chirik, P. J. Angew. Chem., Int. Ed. 2021, 60, 14376.
|
[12] |
(b) Grant, L. N.; Carroll, M. E.; Carroll, P. J.; Mindiola, D. J. Inorg. Chem. 2016, 55, 7997.
|
[13] |
(a) Pecak, J.; Fleissner, S.; Veiros, L. F.; Pittenauer, E.; St?ger, B.; Kirchner, K. Organometallics 2021, 40, 278.
|
[13] |
(b) Pecak, J.; Eder, W.; St?ger, B.; Realista, S.; Martinho, P. N.; Calhorda, M. J.; Linert, W.; Kirchner, K. Organometallics 2020, 39, 2594.
|
[13] |
(c) Krishnan, V. M.; Arman, H. D.; Tonzetich, Z. J. Dalton Trans. 2018, 47, 1435.
|
[13] |
(d) Camp, C.; Naested, L. C. E.; Severin, K.; Arnold, J. Polyhedron 2016, 103, 157.
|
[14] |
Lee, B.; Pabst, T. P.; Hierlmeier, G.; Chirik, P. J. Organometallics 2023, 42, 708.
|
[15] |
(a) Amaya, A. L.; Alawisi, H.; Arman, H. D.; Tonzetich, Z. J. Organometallics 2023, 42, 2902.
|
[15] |
(b) Li, Y.; Krause, J. A.; Guan, H. Organometallics 2020, 39, 3721.
|
[16] |
(a) Muhammad, S. R.; Nugent, J. W.; Tokmic, K.; Zhu, L.; Mahmoud, J.; Fout, A. R. Organometallics 2019, 38, 3132.
|
[16] |
(b) Hebden, T. J.; St John, A. J.; Gusev, D. G.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. Angew. Chem., Int. Ed. 2011, 50, 1873.
|
[17] |
(a) Gullett, K. L.; Nugent, J. W.; Darrow, W. T.; Najera, D. C.; Bender, N. A.; Bruske, E. L.; Leahy, C. A.; Miller, T. J.; Muhammad, S. R.; Fout, A. R. In Comprehensive Coordiantion Chemistry III, Vol. 6, Elsevier, Amsterdam, 2021, pp. 188-228.
|
[17] |
(b) Mézailles, M. In Comprehensive Coordiantion Chemistry III, 3rd ed., Elsevier, Amsterdam, 2021, pp. 875-958.
|
[17] |
(c) Stephens, D. N.; O'Hagan, M.; Hulley, E.; Mock, M. T. In Comprehensive Coordination Chemistry III, 3rd ed., Elsevier, Amsterdam, 2021, pp. 363-409.
|
[17] |
(d) Singh, D.; Buratto, W. R.; Torres, J. F.; Murray, L. J. Chem. Rev. 2020, 120, 5517.
|
[18] |
(a) Kleinhans, G.; Karhu, A. J.; Boddaert, H.; Tanweer, S.; Wunderlin, D.; Bezuidenhout, D. I. Chem. Rev. 2023, 123, 8781.
|
[18] |
(b) Ott, J. C.; Bürgy, D.; Guan, H.; Gade, L. H. Acc. Chem. Res. 2022, 55, 857.
|
[18] |
(c) Matveeva, R.; Blasius, C. K.; Wadepohl, H.; Gade, L. H. Dalton Trans. 2021, 50, 6802.
|
[18] |
(d) Whited, M. T.; Zhang, J.; Conley, A. M.; Ma, S.; Janzen, D. E.; Kohen, D. Angew. Chem., Int. Ed. 2021, 60, 1615.
|
[18] |
(e) Li, Y.; Krause, J. A.; Guan, H. Organometallics 2018, 37, 2147.
|
[18] |
(f) Guard, L. M.; Hebden, T. J.; Linn, D. E.; Heinekey, D. M. Organometallics 2017, 36, 3104.
|
[18] |
(g) Lagaditis, P. O.; Schluscha?, B.; Demeshko, S.; Würtele, C.; Schneider, S. Inorg. Chem. 2016, 55, 4529.
|
[18] |
(h) Yang, H.; Liu, J.-C.; Bao, X.-Y.; Xing, W.-R.; Liu, S.-S.; Chen, W.-T.; Qiu, D.-F. Acta Chim. Sinica 2010, 68, 508 (in Chinese).
|
[18] |
(杨浩, 刘建超, 包晓玉, 行文茹, 刘珊珊, 陈文涛, 邱东方, 化学学报, 2010, 68, 508.)
|
[19] |
(a) Dong, K.; Sang, R.; Wei, Z.; Liu, J.; Spannenberg, A.; Jiao, H.; Franke, R.; Beller, M. Chem. Sci. 2018, 9, 2510.
|
[19] |
(b) Weng, Z.; Teo, S.; Hor, T. S. A. Acc. Chem. Res. 2007, 40, 676.
|
[19] |
(c) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed. 2001, 40, 680.
|
[19] |
(d) Slone, C. S.; Weinberger, D. A.; Mirkin, C. A. Prog. Inorg. Chem. 1999, 48, 233.
|
[20] |
For reviews, see: (a) Guo, J.; Cheng, Z.; Chen, J.; Chen, X.; Lu, Z. Acc. Chem. Res. 2021, 54, 2701.
|
[20] |
(b) Wang, H.; Wen, J.; Zhang, X. Chem. Rev. 2021, 121, 7530.
|
[20] |
(c) Wen, J.; Wang, F.; Zhang, X. Chem. Soc. Rev. 2021, 50, 3211.
|
[20] |
For selected papers, see: (d) Dian, L.; Marek, I. Org. Lett. 2020, 22, 4914.
|
[20] |
(e) Basu, D.; Gilbert-Wilson, R.; Gray, D. L.; Rauchfuss, T. B.; Dash, A. K. Organometallics 2018, 37, 2760.
|
[20] |
(f) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
|
[20] |
(g) Chu, W.-Y.; Gilbert-Wilson, R.; Rauchfuss, T. B.; van Gastel, M.; Neese, F. Organometallics 2016, 35, 2900.
|
[20] |
(h) Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawlu?, P. Catal. Commun. 2016, 78, 71.
|
[21] |
(a) Li, W.; Zhao, J.; Zhang, X.; Gong, D. Ind. Eng. Chem. Res. 2019, 58, 2792.
|
[21] |
(b) Jia, X.; Zhang, X.; Gong, D. Polym. Chem. 2018, 56, 2286.
|
[21] |
(c) Zhao, J.; Chen, H.; Li, W.; Jia, X.; Zhang, X.; Gong, D. Inorg. Chem. 2018, 57, 4088.
|
[21] |
(d) Gong, D.; Zhang, X.; Huang, K.-W. Dalton Trans 2016, 45, 19399.
|
[21] |
(e) Gong, D.; Wang, B.; Jia, X.; Zhang, X. Dalton Trans. 2014, 43, 4169.
|
[22] |
For reviews, see: (a) Asay, M.; Morales-Morales, D. Dalton Trans. 2015, 44, 17432.
|
[22] |
For selected papers, see: (b) Simler, T.; Choua, S.; Danopoulos, A. A.; Braunstein, P. Dalton Trans. 2018, 47, 7888.
|
[22] |
(c) Suzuki, T.; Masuda, H.; Fryzuk, M. D. Dalton Trans. 2017, 46, 6612.
|
[22] |
(d) Simler, T.; Braunstein, P.; Danopoulos, A. A. Chem. Commun. 2016, 52, 2717.
|
[23] |
(a) Wang, X.; Wei, J.; Xi, Z. Organometallics 2023, 42, 1243.
|
[23] |
(b) Xu, H.; Lv, Z.-J. Wei, J.; Xi, Z. Dalton Trans. 2023, 52, 11565.
|
[23] |
(c) Yin, Z.-B.; Wei, J.; Xi, Z. Dalton Trans. 2022, 51, 3431.
|
[23] |
(d) Li, H.-J.; Feng, R.; Wang, G.-X.; Wei, J.; Xi, Z. Dalton Trans. 2022, 51, 16811.
|
[23] |
(e) Wang, G.-X.; Yin, J.; Li, J.; Yin, Z.-B.; Wu, B.; Wei, J.; Zhang, W.-X.; Xi, Z. CCS Chem. 2021, 3, 308.
|
[23] |
(f) Yin, J.; Li, J.; Wang, G.-X.; Yin, Z.-B.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2019, 141, 4241.
|
[23] |
(g) Li, J.; Yin, J.; Wang, G.-X.; Yin, Z.-B.; Zhang, W.-X.; Xi, Z. Chem. Commun. 2019, 55, 9641.
|
[24] |
Chen, Y.; Shi, X.; Huang, D.; Wei, J.; Xi, Z. Chin. Chem. Lett. 2023, 10.1016/j.cclet.2023.109292.
|
[25] |
(a) So, J.; Kim, S.; Cho, K. B.; Lee, Y. Chem. Commun. 2021, 57, 3219.
|
[25] |
(b) Townsend, T. M.; Bernskoetter, W. H.; Brudvig, G. W.; Hazari, N.; Lant, H. M. C.; Mercado, B. Q. Polyhedron 2020, 177, 114308.
|
[25] |
(c) Li, Y.; Krause, J. A.; Guan, H. Organometallics 2018, 37, 2147.
|
[25] |
(d) Alawisi, H.; Al-Afyouni, K. F.; Arman, H. D.; Tonzetich, Z. J. Organometallics 2018, 37, 4128.
|
[26] |
Foerstner, J.; Kakoschke, A.; Goddard, R.; Rust, J.; Wartchow, R.; Butensch?n, H. J. Organomet. Chem. 2001, 617, 412.
|
[27] |
(a) Wang, A.; Sun, H.; Li, X. Organometallics 2008, 27, 5434.
|
[27] |
(b) Aviles, T.; Dinis, A.; Calhorda, M. J.; Pinto, P.; Felix, V.; Drew, M. G. B. J. Organomet. Chem. 2001, 625, 186.
|
[27] |
(c) Klein, H.-F.; Helwig, M.; Koch, U.; Floerke, U.; Haupt, H.-J. Naturforsch., B: J. Chem. Sci. 1993, 48, 778.
|
[28] |
(a) Bellows, S. M.; Arnet, N. A.; Gurubasavaraj, P. M.; Brennessel, W. W.; Bill, E.; Cundari, T. R.; Holland, P. L. J. Am. Chem. Soc. 2016, 138, 12112.
|
[28] |
(b) Gardiner, M. G.; Stringer, D. N. Materials 2010, 3, 841.
|
[28] |
(c) Smith, J. M.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2003, 125, 15752.
|
[28] |
(d) Guillemot, G.; Solari, E.; Scopelliti, R.; Floriani, C. Organometallics 2001, 20, 2446.
|
[28] |
(e) Oguni, N.; Shimazu, S.; Nakamura, A. Polym. J. 1980, 12, 891.
|
[29] |
For reviews, see: (a) Swatiputra, A. A.; Mukherjee, D.; Dinda, S.; Roy, S.; Pramanik, K.; Ganguly, S. Dalton Trans. 2023, 52, 15627.
|
[29] |
For selected papers, see: (b) Liu, Y.; Zhu, K.; Chen, L.; Liu, S.; Ren, W. Inorg. Chem. 2022, 61, 20373.
|
[29] |
(c) Wang, W.; Tan, G.; Feng, R.; Fang, Y.; Chen, C.; Ruan, H.; Zhao, Y.; Wang, X. Chem. Commun. 2020, 56, 3285.
|
[30] |
(a) Werner, D.; Zhao, X.; Best, S. P.; Maron, L.; Junk, P. C.; Deacon, G. B. Chem.-Eur. J. 2017, 23, 2084.
|
[30] |
(b) Krishnan, V. M.; Arman, H. D.; Tonzetich, Z. J. Dalton Trans. 2017, 46, 1186.
|
[30] |
(c) Yang, H.; Zhao, Y.; Liu, B.; Su, J.-H.; Fedushkin, I. L.; Wu, B.; Yang, X.-J. Dalton Trans. 2017, 46, 7857.
|
[30] |
(d) Cameron, L. A.; Ziller, J. W.; Heyduk, A. F. Chem. Sci. 2016, 7, 1807.
|
[30] |
(e) Kikuchi, T.; Kobayashi, K.; Tsuge, K.; Kitagawa, S.; Tanaka, K. Dalton Trans. 2016, 45, 14030.
|
[30] |
(f) Weiner, H.; Finke, R. G. J. Am. Chem. Soc. 1999, 121, 9831.
|
[31] |
Johnson, K. R. D.; Hayes, P. G. Dalton Trans. 2014, 43, 2448.
|
/
〈 |
|
〉 |