Review

Synthesis of N-confused Porphyrin Manganese, Iron and Cobalt Complexes and Their Applications

  • Wanhong Li ,
  • Yinghong Mu ,
  • Xin Wang ,
  • Xing Li ,
  • Haiyang Liu ,
  • Suhong Peng
Expand
  • a College of Chemsitry and Bioengineering, Yichun University, Yichun 336000, China
    b Department of Chemistry, South China University of Technology, Guangzhou 510641, China

Received date: 2024-02-15

  Online published: 2024-04-12

Supported by

National Natural Science Foundation of China(21671068); 2018 local Development Research Center Project of Yichun Univeristy(DF2018021); Science and Technology Research Project of Education Comission of Jiangxi Province(GJJ2201723); Science and Technology Research Project of Education Comission of Jiangxi Province(GJJ2201724); science and technology research project of health commission of Jiangxi province(202212701); Open Fund of Key Laboratory of Green Chemical Technology of Fujian Province University(WYKF-GCT2022-1)

Abstract

Study on the synthesis and applications of N-confused porphyrin manganese, iron and cobalt complexes has become one of the hot topics of porphyrin chemistry. Compared with the coordination chemistry of porphyrin, that of N-confused porphyrin is complicated because of the peripheral nitrogen atom, the intramolecular C—H bond and NH tautomerism. N-confused porphyrin has two NH tautomers, isomer A and isomer B. Varied functions are observed in the coordination chemistry of N-confused porphyrin such as stabilization of unusual metal oxidation states and metal-carbon bond formation. N-confused porphyrins have flexible character toward the metal oxidation state. Removal of the number of hydrogen atoms from one to three will result in a monanionic, dianionic and trianionic macrocycle. The various metal oxidation states are observed in N-confused porphyrin manganese, iron and cobalt complexes. The monovalent character of N-confused porphyrin is observed in cobalt chemistry such as CoII(2-N-RNCTPP)Cl and CoII(NCTPP). The cobalt metal takes a valence of +2 since CoII(2-N-RNCTPP)Cl has a monoanionic axial ligand and N-confused porphyrin ligand. The squar-planar Co(Ⅱ) complex CoII(NCTPP) exists the cobalt-carbon bond. The divalent and trivalent characters of N-confused porphyrins are observed in manganese, iron and cobalt chemistry. In Mn(Ⅱ) and Fe(Ⅱ) complexes of N-confused porphyrin MnII(NHCTPP)Br and FeII(NHCTPP)Br, oxidation of the metal center is observed through intramolecular C—H bond activation of N-confused porphyrin ligand, which can be converted into Mn(Ⅲ) and Fe(Ⅲ) complexes Mn(NCTPP)Br and Fe(NCTPP)Br on exposure to air in solutions. {FeNO}6 with a linear Fe-NO conformation is observed in the iron chemistry of N-confused porphyrin, which is unusually stable among the porphyrin iron nitrosyl complexes. It implies that iron N-confused porphyrin complexes can be used to study NO delivery and storage. This review covers the progress on the synthesis of N-confused porphyrin manganese, iron and cobalt complexes and their applications in the field of catalytic chemistry and biological chemistry. The synthesis methods of N-confused porphyrin manganese, iron and cobalt complexes and their applications in catalytic oxidation, cyclopropanation of alkene, nitrate reductase activity and chemical nuclease activity are introduced systematically.

Cite this article

Wanhong Li , Yinghong Mu , Xin Wang , Xing Li , Haiyang Liu , Suhong Peng . Synthesis of N-confused Porphyrin Manganese, Iron and Cobalt Complexes and Their Applications[J]. Acta Chimica Sinica, 2024 , 82(5) : 541 -550 . DOI: 10.6023/A24020052

References

[1]
Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 104, 561.
[2]
Geier, G. R.; Haynes, D. M.; Lindsey, J. S. Org. Lett. 1999, 1, 1455.
[3]
Harvey, J. D.; Ziegler, C. J. J. Inorg. Biochem. 2006, 99, 869.
[4]
Yu, X. Y.; Liao, Z. X.; Jiang, B. F.; Zheng, L. Y.; Li, X. F. Spectrochim. Acta A 2014, 133, 372.
[5]
Fields, K. B.; Engle, J. T.; Sripothongnak, S.; Kim, C.; Zhang, X. P.; Ziegler, C. J. Chem. Commun. 2011, 47, 749.
[6]
Yamamoto, T.; Toganoh, M.; Furuta, H. Dalton Trans. 2012, 41, 9154.
[7]
Peng, S. H.; Wang, L. L.; Cai, S. S.; Xiao, H. Q.; Zhao, X. T.; Wang, H.; Liu, H. Y. J. Porphyr. Phthalocya. 2022, 26, 195.
[8]
Li, W. H.; Yu, M. Y.; Wang, L. L.; Zhu, D. H.; Peng, S. H.; Wang, H.; Liu, H. Y. Acta Chim. Sinica 2023, 81, 345 (in Chinese).
[8]
(李万红, 于明月, 王丽丽, 朱德煌, 彭素红, 王惠, 刘海洋, 化学学报, 2023, 81, 345.)
[9]
Yu, X. Y.; Liao, Z. X.; Jiang, B. F.; Zheng, L. Y.; Li, X. F. Spectrochim. Acta A 2014, 133, 372.
[10]
Thomas, A. P.; Babu, P. S.; Asha, N. S.; Ramakrishnan, S.; Ramaiah, D.; Chandrashekar, T. K.; Srinivasan, A.; Pillai, M. R. J. Med. Chem. 2012, 55, 5110.
[11]
Peng, S. H.; Zhou, R.; Zou, H. B. Chinese J. Org. Chem. 2019, 39, 3384 (in Chinese).
[11]
(彭素红, 周蓉, 邹怀波, 有机化学, 2019, 39, 3384.)
[12]
Toganoh, M.; Furuta, H. Chem. Rev. 2022, 122, 8313.
[13]
Deng, F. L.; Ge, X. R.; Deng, Z. Y.; Xu, L.; Rao, Y. T.; Yin, B. S.; Zhou, M. B.; Song, J. X.; Osuka, A. Inorg. Chem. 2024, 63, 5769.
[14]
Chung, C. H.; Hsu, K. C.; Lee, H.; Hung, C. H. Chemistry 2019, 77, 379 (in Chinese).
[14]
(庄川弘, 许凯淳, 李向, 洪政雄, 化学, 2019, 77, 379.)
[15]
Miyazaki, T.; Fukuyama, K.; Mashita, S.; Deguchi, Y.; Yamamoto, T.; Ishida, M.; Mori, S.; Furuta, H. ChemPlusChem 2019, 84, 603.
[16]
dela Cruz, J.; Ruamps, S.; Arco, S.; Hung, C. H. Dalton Trans. 2019, 48, 7527.
[17]
Ge, Y. S.; Cheng, G. E.; Xu, N. F.; Wang, W. Z.; Ke, H. Z. Catal. Sci. Technol. 2019, 9, 4255.
[18]
Hua, W.; Liu, T. T.; Zheng, Z. Y.; Yuan, H. H.; Xiao, L.; Feng, K.; Hui, J. S.; Deng, Z.; Ma, M. T.; Cheng, J.; Song, D. Q.; Lyu, F. L.; Zhong, J.; Peng, Y. Angew. Chem. Int. Ed. 2024, e202315922.
[19]
Koniarz, S.; Szyde?ko, K.; Bia?ek, M. J.; Hurej, K.; Chmielewski, P. J. Adv. Sci. 2024, 11, 2306696.
[20]
Bohle, D. S.; Chen, W. C.; Hung, C. H. Inorg. Chem. 2002, 41, 3334.
[21]
Harvey, J. D.; Zielger, C. J. Chem. Commun. 2002, 1942.
[22]
Harvey, J. D.; Zielger, C. J. Chem. Commun. 2003, 2890.
[23]
Hung, S. W.; Yang, F. A.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Inorg. Chem. 2008, 47, 7202.
[24]
Hasio, D. Z.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Polyhedron 2012, 31, 339.
[25]
Yang, C.; Tsai, M. Y.; Hung, S. W.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Polyhedron 2012, 37, 1.
[26]
Chen, W. C.; Hung, C. H. Inorg. Chem. 2001, 40, 5070.
[27]
Wang, Y. C.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Inorg. Chem. 2013, 52, 10711.
[28]
Harvey, J. D.; Ziegler, C. J. Chem. Commun. 2004, 14, 1666.
[29]
Zilbermann, I.; Maimon, E.; Ydgar, R.; Shames, A. I.; Korin, E.; Soifer, L.; Bettelheim, A. Inorg. Chem. Commun. 2004, 7, 1238.
[30]
Peng, S. H.; Mahmood, M. H. R.; Zou, H. B.; Yang, S. B.; Liu, H. Y. J. Mol. Catal. A: Chem. 2014, 395, 180.
[31]
Peng, S. H.; Lv, B. B.; Ali, A.; Wang, J. M.; Ying, X.; Wang, H.; Liu, J. B.; Ji, L. N.; Liu, H. Y. J. Porphyr. Phthalocya. 2016, 20, 624.
[32]
Ikawa, Y.; Moriyama, S.; Harada, H.; Furuta, H. Org. Biomol. Chem. 2008, 6, 4157.
[33]
Du, Y. H.; Zhang, D.; Chen, W.; Zhang, M.; Zhou, Y. Y.; Zhou, X. Bioorg. Med. Chem. 2010, 18, 1111.
[34]
Bigey, P.; S?nnichsen, S. H.; Meunier, B.; Nielsen, P. E. Bioconjug. Chem. 1997, 8, 267.
[35]
Lu, J.; Liu, H. Y.; Shi, L.; Wang, S. L.; Ying, X.; Zhang, L.; Ji, L. N.; Zang, L. Q.; Chang, C. K. Chin. Chem. Lett. 2011, 22, 101.
[36]
Huang, J. T.; Wang, X. L.; Zhang, Y.; Mahmood, M. H. R.; Huang, Y. Y.; Ying, X.; Ji, L. N.; Liu, H. Y. Transit. Metal Chem. 2013, 38, 283.
[37]
Zhang, Y.; Wang, Q.; Wen, J. Y.; Wang, X. L.; Mahmood, M. H. R.; Ji, L. N.; Liu, H. Y. Chin. J. Chem. 2013, 31, 1321.
[38]
Hegde, A. H.; Prashanth, S. N.; Seetharamappa, J. J. Pharm. Biomed. Anal. 2012, 63, 40.
[39]
Cui, Y. R.; Hao, E. J.; Hui, G. Q.; Guo, W.; Cui, F. L. Spectrochim. Acta A 2013, 110, 92.
[40]
Ching, W. M.; Chuang, C. H.; Wu, C. W.; Peng, C. H.; Hung, C. H. J. Am. Chem. Soc. 2009, 131, 7952.
[41]
Ching, W. M.; Chen, P. P. Y.; Hung, C. H. Dalton Trans. 2017, 46, 15087.
[42]
Iwanaga, O.; Miyanishi, M.; Tachibana, T.; Miyazaki, T.; Shiota, Y.; Yoshizawa, K.; Futura, H. Molecules 2022, 27, 7266.
[43]
Miyazaki, T.; Yamamoto, T.; Mashita, S.; Deguchi, Y.; Fukuyama, K.; Ishida, M.; Mori, S.; Furuta, H. Eur. J. Inorg. Chem. 2018, 2, 203.
[44]
Chuang, C. H.; Liaw, W. F.; Hung, C. H. Angew. Chem. Int. Ed. 2016, 55, 5190.
[45]
Sun, M.; Xie, Y. S.; Baryshr, G.; Wu, X. Y.; ?gren, H.; Li, S. J. Chem. Sci. 2024, 15, 2047.
[46]
Li, Q. H.; Ishida, M.; Wang, Y. Y.; Sha, F.; Wu, X. Y.; ?gren, H.; Furuta, H.; Xie, Y. S. Angew. Chem. Int. Ed. 2023, 62, e202212174.
[47]
Li, C. J.; Li, Q. Z.; Shao, J. W.; Tong, Z. F.; Furuta, H.; Xie, Y. S. J. Am. Chem. Soc. 2020, 142, 17195.
[48]
Su, G. X.; Li, Q. Z.; Ishida, M.; Li, C. J.; Sha, F.; Wu, X. Y.; Wang, L.; Baryshnikov, G.; Li, D. W.; ?gren, H.; Furuta, H.; Xie, Y. S. Angew. Chem. Int. Ed. 2020, 59, 1537.
[49]
Ren, Z. X.; Zhao, B.; Xie, J. Small 2023, 19, 2301818.
[50]
Li, Q. Z.; Li, C. J.; Baryshnikov, G.; Ding, Y. B.; Zhao, C. X.; Gu, T. T.; Sha, F.; Liang, X.; Zhu, W. H.; Wu, X. Y.; ?gren, H.; Sessler, J. L.; Xie, Y. S. Nature Commun. 2020, 11, 5289.
Outlines

/