Overview of Advances in DNA Nanoflower Biomedical Research
Received date: 2024-03-08
Online published: 2024-04-29
Supported by
National Natural Science Foundation of China(22122409); National Natural Science Foundation of China(22377110); Henan Province Advantage Discipline Cultivation Fund(222301420019)
DNA nanostructures show great potential for biomedical applications due to their programmability, autonomous design and good biocompatibility. DNA nanoflower (DNF), as a unique DNA-organic inorganic hybrid nanostructure, has attracted considerable attention within recent years. Its mineralized inorganic core not only helps to maintain the stability of DNA, but also provides an auxiliary mineralization function of metal ions. Among them, DNFs can efficiently load functional molecules such as drugs, fluorescent probes, enzymes, nucleic acid aptamers, and so on, by virtue of their high-density nucleic acid sequences and good loading capacity. In addition, the size of the nanoparticles can be adjusted by controlling the reaction conditions, which is suitable for high permeability and long retention effects in different physiological environments, and thus applied in many fields of biomedicine. In this paper, the synthesis and biomedical applications of DNF are reviewed. Firstly, the main synthesis methods of DNF, rolling circle amplification (RCA) as well as salt aging method, are firstly introduced in detail, and different reaction conditions including enzymes, reaction time, temperature, pH, etc., the synthesis of DNF with different cationic metal cores or modification of DNF by different substances are highlighted for the functional as well as structural alteration of DNF, which can adapt the DNF to the applications in various scenarios. Secondly, the biomedical applications of DNF, including the latest research progress in bio-detection, bio-imaging and drug therapy, are demonstrated. Due to the unique physicochemical properties of DNF, including good biocompatibility, biodegradability, and structural and functional diversities, DNF has become a kind of nucleic acid nanomaterials with great potentials for applications. Finally, the prospects for the application of DNF and the current challenges are summarized, and great hopes are placed on researchers to explore the understanding of the formation mechanism and function of DNF as well as the applied research of metal salt cores to effectively promote the development of DNF-based biomedicine.
Key words: DNA nanoflower; bio-detection; bio-imaging; drug therapy
Danyu Wang , Zihan Guo , Mengke Guo , Hua Yi , Mengyu Huang , Jie Duan , Kaixiang Zhang . Overview of Advances in DNA Nanoflower Biomedical Research[J]. Acta Chimica Sinica, 2024 , 82(6) : 677 -689 . DOI: 10.6023/A24030075
[1] | Seeman, N. C. J. Theor. Biol. 1982, 99, 237. |
[2] | Zhu, G.-Z.; Hu, R.; Zhao, Z.-L.; Chen, Z.; Zhang, X.-B.; Tan, W.-H. J. Am. Chem. Soc. 2013, 135, 16438. |
[3] | Baker, Y. R.; Chen, J.-F.; Brown, J.; El-Sagheer, A. H.; Wiseman, P.; Johnson, E.; Goddard, P.; Brown, T. Nucleic Acids Res. 2018, 46, 7495. |
[4] | Baker, Y. R.; Yuan, L.; Chen, J.; Belle, R.; Carlisle, R.; El-Sagheer, A. H.; Brown, T. Nucleic Acids Res. 2021, 49, 9042. |
[5] | Beyer, S.; Nickels, P.; Simmel, F. C. Nano Lett. 2005, 5, 719. |
[6] | Wang, Y.-T.; Wang, Z.-Z.; Zhan, Z.-X.; Yan, L-N.; Wang, L.-J.; Xu, H.-Y. Foods 2022, 11, 1852. |
[7] | Lv, J.; Dong, Y.-H.; Gu, Z.; Yang, D.-Y. Chem.-Eur. J. 2020, 26, 14512. |
[8] | Kim, E.; Agarwal, S.; Kim, N.; Hage, F. S.; Leonardo, V.; Gelmi, A.; Stevens, M. ACS Nano 2019, 13, 2888. |
[9] | Lv, Y.-F.; Hu, R.; Zhu, G.-Z.; Zhang, X.-B.; Mei, L.; Liu, Q.-L.; Qiu, L.-P.; Wu, C.-C.; Tan, W.-H. Nat. Protoc. 2015, 10, 1508. |
[10] | Park, K. S.; Batule, B. S.; Chung, M.; Kang, K. S.; Park, T. J.; Kim, M. I.; Park, H. G. J. Mater. Chem. B 2017, 5, 2231. |
[11] | Xiang, J.-H.; Feng, K.; Wan, T.; He, S.-Y.; Deng, H.-L.; Li, D.-R. Microchemical Journal 2024, 200, 110289. |
[12] | Zhao, Z.; Fu, J.; Dhakal, S.; Johnson-Buck, A.; Liu, M.; Zhang, T.; Woodbury, N. W.; Liu, Y.; Walter, N. G.; Yan, H. Nat. Commun. 2016, 7, 10619. |
[13] | Yan, Y.-C.; Li, J.; Li, W.-H.; Wang, Y.; Song, W.-L.; Bi, S. Nanoscale 2018, 10, 22456. |
[14] | Kim, E.; Zwi-Dantsis, L.; Reznikov, N.; Hansel, C. S.; Agarwal, S.; Stevens, M. M. Adv. Mater. 2017, 29, 1701086. |
[15] | Ge, J.; Lei, J.-D.; Zare, R. N. Nat. Nanotechnol. 2012, 7, 428. |
[16] | Liang, Y.; Zhang, J.-G.; Xu, C.-L.; Wang, J.-J.; Han, W.-S.; Yang, J.-L.; Wu, S.-X.; An, J-Y.; Liu, J.-J.; Zhang, Z.-Z.; Shi, J.-J.; Zhang, K.-X. ACS Nano 2023, 17, 15025. |
[17] | Li, C.-Y.; Meng, Y.; Wang, S.-S.; Qian, M.; Wang, J.-X.; Lu, W.-Y.; Huang, R.-Q. ACS Nano 2015, 9, 12096. |
[18] | Li, S.-K.; Chen, A.-Y.; Niu, X.-X.; Liu, Z.-T.; Du, M.; Chai, Y.-Q.; Yuan, R.; Zhuo, Y. Chem. Commum. 2017, 53, 9624. |
[19] | Li, Y.-X.; Wang, W.-Q.; Gong, H.-X.; Xu, J.-H.; Yu, Z.-C.; Wei, Q.-H.; Tang, D.-P. J. Mater. Chem. B 2021, 9, 6818. |
[20] | Yang, L.-M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047. (in Chinese) |
[20] | (杨立敏, 刘波, 李娜, 唐波, 化学学报, 2017, 75, 1047.) |
[21] | Wu, T.-T.; Yang, Y.-M.; Cao, Y.; Song, Y.-C.; Xu, L.-P.; Zhang, X.-J.; Wang, S.-T. ACS Appl. Mater. Interfaces 2018, 10, 42050. |
[22] | Zeng, R.-J.; Wang, J.; Wang, Q.-S.; Tang, D.-P.; Lin, Y. Talanta 2021, 221, 121600. |
[23] | He, H.-Z.; Cheng, L.-J.; He, Y.-H.; Chen, J.-M.; Song, L.; Yang, Y.-Y.; Zhang, Y.; Lin, Z.-Y.; Hong, G.-L. Sens. Actuators, B 2022, 371, 132532. |
[24] | Edgar, J. R. BMC Biol. 2016, 14, 46. |
[25] | Soung, Y. H.; Ford, S.; Zhang, V.; Chung, J. Cancers 2017, 9, 8. |
[26] | Zhang, X.-Y.; Zhu, X.-Y.; Li, Y.-F.; Hai, X.; Bi, S. Talanta 2023, 258, 124456. |
[27] | Gao, Y.-F.; Yan, Y.-C.; Cao, J.-Y.; Bi, S. J. Instrum. Anal. 2022, 41, 601. (in Chinese) |
[27] | (高雨菲, 闫永存, 曹景玉, 毕赛, 分析测试学报, 2022, 41, 601.) |
[28] | Tamima, U.; Sarkar, S.; Islam, M. R.; Shil, A.; Kim, K. H.; Reo, Y. J.; Jun, Y. W.; Banna, H.; Lee, S.; Ahn, K. H. Angew. Chem., Int. Ed. 2023, 62, e202300580. |
[29] | Tan, K.-Y.; Li, C.-Y.; Li, Y.-F.; Fei, J.; Yang, B.; Fu, Y.-J.; Li, F. Anal. Chem. 2017, 89, 1749. |
[30] | Kim, N.; Kim, E.; Kim, H.; Thomas, M. R.; Najer, A.; Stevens, M. M. Adv. Mater. 2021, 33, 2007738. |
[31] | Ma, Y.-X.; Chen, Q.-H.; Pan, X.-Y.; Zhang, J. Top. Curr. Chem. 2021, 379, 10. |
[32] | Zhu, H.; Fan, J.; Du, J.; Peng, X. Acc. Chem. Res. 2016, 49, 2115. |
[33] | Hu, R.; Zhang, X.-B.; Zhao, Z.-L.; Zhu, G.-Z.; Chen, T.; Fu, T.; Tan, W.-H. Angew. Chem., Int. Ed. 2014, 53, 5821. |
[34] | Deng, R.-J.; Zhang, K.-X.; Wang, L.-D.; Ren, X.-J.; Sun, Y.-P.; Li, J.-H. Chem 2018, 4, 1373. |
[35] | Li, Y.; Wu, Y.-H.; Xu, R.; Guo, J.-L.; Quan, F.-L.; Zhang, Y.; Huang, D.; Pei, Y.; Gao, H.; Liu, W.; Liu, J.-J.; Zhang, Z.-Z.; Deng, R.-J.; Shi, J.-J.; Zhang, K.-X. Nat. Commun. 2023, 14, 7722. |
[36] | Dan, Q.; Jiang, X.-P.; Wang, R.; Dai, Z.-F.; Sun, D. Adv. Sci. 2023, 10, 2207090. |
[37] | Zhao, H.-X.; Lv, J.-G.; Li, F.; Zhang, Z.-L.; Zhang, C.-Z.; Gu, Z.; Yang, D.-Y. Biomaterials 2021, 268, 120591. |
[38] | Cesur-Ergün, B.; Demir-Dora, D. J. Gene Med. 2023, 25, e3550. |
[39] | Iglesias-Lopez, C.; Agustí, A.; Obach, M.; Vallano, A. Front. Pharmacol. 2019, 10, 921. |
[40] | Li, C.; Si, X.; Li, J.-B.; Zhang, Y. Acta Chim. Sinica 2023, 81, 1240. (in Chinese) |
[40] | (李琛, 司笑, 李金波, 张艳, 化学学报, 2023, 81, 1240.) |
[41] | Jin, Y.; Li, Z.-H.; Liu, H.-F.; Chen, S.-Z.; Wang, F.; Wang, L.; Li, N.; Ge, K.; Yang, X.-J.; Liang, X.-J. NPG Asia Mater. 2017, 9, 365. |
[42] | Huang, C.-H.; Lee, K.-C.; Doudna, J. A. Trends in Cancer 2018, 4, 499. |
[43] | Shi, J.-J.; Yang, X.; Li, Y.-N.; Wang, D.-Y.; Liu, W.; Zhang, Z.-Z.; Liu, J.-J.; Zhang, K.-X. Biomaterials 2020, 256, 120221. |
[44] | Krieg, A. M. Nat. Rev. Drug Discovery 2006, 5, 471. |
[45] | Krieg, A. M. Oncogene 2008, 27, 161. |
[46] | Wang, D.-Y.; Liu, J.-W.; Duan, J.; Ma, Y.-R.; Gao, H.; Zhang, Z.-Z.; Liu, J.-J.; Shi, J.-J.; Zhang, K.-X. ACS Appl. Mater. Interfaces 2022, 14, 44183. |
[47] | Zhang, L.-Q.; Zhu, G.-Z.; Mei, L.; Wu, C.-C.; Qiu, L.-P.; Cui, C.; Liu, Y.; Teng, I. T.; Tan, W.-H. ACS Appl. Mater. Interfaces 2015, 7, 24069. |
[48] | Wang, J.; Gan, M.-Z. Int. J. Mol. Sci. 2022, 23, 16030. |
[49] | Wang, J.; Wang, H.-M.; Wang, H.; He, S.-Z.; Li, R.-M.; Deng, Z.; Liu, X.-Q.; Wang, F. ACS Nano 2019, 13, 5852. |
[50] | Zhang, K.-X.; Liu, J.-J.; Song, Q.-L.; Wang, D.-Y.; Shi, J.-J. Chem. J. Chin. Univ. 2020, 41, 1461. (in Chinese) |
[50] | (张开翔, 刘军杰, 宋巧丽, 王丹钰, 史进进, 高等学校化学学报, 2020, 41, 1461.) |
[51] | Zhang, L.-L.; Abdullah, R.; Hu, X.-X.; Bai, H.-R.; Fan, H.-H.; He, L.; Liang, H.; Zou, J.-M.; Liu, Y.-F.; Sun, Y.; Zhang, X.-B.; Tan, W.-H. J. Am. Chem. Soc. 2019, 141, 4282. |
[52] | Liao, H.-J.; Cao, Y.-C.; Hu, C.; Shen, S.-F.; Zhang, Z.-F.; Li, D.-R.; Du, Y.-H. Mater. Today Bio 2024, 25, 101005. |
[53] | Zhang, K-X.; Liu, J.-J.; Song, Q.-L.; Yang, X.; Wang, D.-Y.; Liu, W.; Shi, J.; Zhang, Z. ACS Appl. Mater. Interfaces 2019, 11, 46604. |
[54] | Gu, C.; Liu, X.-L.; Luo, L.; Chen, J.-Q.; Zhou, X.; Chen, G.-H.; Huang, X.; Yu, L.; Chen, Q.; Yang, Y. Angew. Chem., Int. Ed. 2023, 62, e202307020. |
[55] | Chen, X.; He, X.-Y.; Gao, R.-X.; Lan, X.-Y.; Zhu, L.-J.; Chen, K.-R.; Hu, Y.-Z.; Huang, K.-L.; Xu, W.-T. ACS Nano 2022, 16, 1036. |
[56] | Ouyang, Q.; Liu, K.; Zhu, Q.; Deng, H.; Le, Y.; Ouyang, W.; Yan, X.; Zhou, W.; Tong, J. Small 2022, 18, e2107534. |
[57] | Imashiro, C.; Takeshita, H.; Morikura, T.; Miyata, S.; Takemura, K.; Komotori, J. Sci. Rep. 2021, 11, 21466. |
[58] | Ghahremani, F. H.; Sazgarnia, A.; Bahreyni-Toosi, M. H.; Rajabi, O.; Aledavood, A. Int. J. Hyperthermia 2011, 27, 625. |
[59] | Shen, S.; Qiu, J.-C.; Huo, D.; Xia, Y.-N. Small 2023, 20, 2305426. |
[60] | Hai, X.; Ji, M.-J.; Yu, K.-X.; Tian, T.; Cui, Z.-M.; Bi, S.; Zhang, X.-J. Mater. Today Nano 2023, 23, 100355. |
[61] | Shi, J-J.; Wang, D.-Y.; Ma, Y.-R.; Liu, J.-W.; Li, Y.-N.; Reza, R.; Zhang, Z.-Z.; Liu, J.-J.; Zhang, K.-X. Small 2021, 17, 2104722. |
/
〈 |
|
〉 |