Article

Synthesis of Indene[1,2-c]isoquinoline-11-one by Rhodium-catalyzed Benzimide-directed C—H Activation

  • Jiaxin Huang ,
  • Min Liu ,
  • Hui Xu ,
  • Hui-Xiong Dai
Expand
  • a State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    c University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2024-04-19

  Online published: 2024-05-15

Supported by

National Natural Science Foundation of China(22171276); National Natural Science Foundation of China(21920102003); Science and Technology Commission of Shanghai Municipality(17JC1405000); Science and Technology Commission of Shanghai Municipality(21ZR1475400); Science and Technology Commission of Shanghai Municipality(23ZR1474400); Science and Technology Commission of Shanghai Municipality(18431907100); Program of Shanghai Academic Research Leader(19XD1424600)

Abstract

Indene[1,2-c]isoquinoline is a novel non-camptothecin-like Topo1 inhibitor, and possesses good antitumour effect on lung cancer, lymphoma, etc. Thus, the development of new methodologies to construct indene[1,2-c]isoquinoline and its derivatives has been a hot topic in organic chemistry. In recent years, benzimidate has been widely used as a building block in the construction of nitrogen-containing heterocycles via transition metal-catalyzed C(sp2)—H bond activation and subsequent cyclization reaction with different reagents, such as alkyne, alkene, carbenes. Meanwhile, α-diazo carbonyl compounds have been widely used as C2 synthons in organic synthesis. In particular, with cyclic α-diazo-1,3-diketones, fused polycyclic compounds could also be prepared via Rh(III)-catalyzed [4+2] oxidative annulations. Herein, we report the construction of indene[1,2-c]isoquinoline-11-one using benzimidate and α-diazo carbonyl compounds as the starting material. The reaction proceeds via a rhodium-catalyzed C—H activation/carbenoid insertion/dehydration process. The protocol showed high atom economy, excellent functional group tolerance, and heterocycle compatibility, giving the indene[1,2-c]isoquinoline-11-one in moderate-to-good yields. Wolff-Kishner reduction of the product with N2H4•H2O affords the indene[1,2-c]isoquinoline. To demonstrate the synthetic utility of this protocol, gram-scale synthesis and late-stage modification of drug molecule were showcased. The KIE value of 3.4∶1 indicated that the C—H cleavage step is probably involved in the rate-determined step. A typical general procedure for the synthesis of indene[1,2-c]isoquinoline-11-one 3a is described as the following: To a solution of ethyl benzimidate (0.1 mmol), [Cp*RhCl2]2 (1.5 mg, 2.5 mol%), and AgOAc (3.2 mg, 20 mol%) in hexafluoroisopropanol (2 mL) was added diazooxindole (0.11 mmol) under N2. The mixture was stirred at 100 ℃ for 12 h. Then the reaction mixture was cooled to room temperature. The mixture was filtered through Celite, and the filtrate was evaporated to give the crude product which was then purified by flash column chromatography on silica gel with a gradient eluent of petroleum ether/ethyl acetate (V/V, 10/1) to give the product 3a.

Cite this article

Jiaxin Huang , Min Liu , Hui Xu , Hui-Xiong Dai . Synthesis of Indene[1,2-c]isoquinoline-11-one by Rhodium-catalyzed Benzimide-directed C—H Activation[J]. Acta Chimica Sinica, 2024 , 82(6) : 565 -569 . DOI: 10.6023/A24040136

References

[1]
Song, Y.; Shao, Z.; Dexheimer, T. S.; Scher, E. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2010, 53, 1979.
[2]
Huang, C.-Y.; Kavala, V.; Kuo, C.-W.; Konala, A.; Yang, T.-H.; Yao, C.-F. J. Org. Chem. 2017, 82, 1961.
[3]
Panzer, A.; Joubert, A. M.; Bianchi, P. C.; Hamel, E.; Seegers, J. C. Eur. J. Cell Biol. 2001, 80, 111.
[4]
Atta-ur-Rahman; Nasreen, A.; Akhtar, F.; Shekhani, M. S.; Clardy, J.; Parvez, M.; Choudhary, M.-I. J. Nat. Prod. 1997, 60, 472.
[5]
(a) Cinelli, M.-A.; Reddy, P. V. N.; Lv, P.-C.; Liang, J.-H.; Chen, L.; Agama, K.; Pommier, Y.; van Breemen, R. B.; Cushman, M. J. Med. Chem. 2012, 55, 10844.
[5]
(b) Pommier, Y.; Cushman, M. Mol. Cancer Ther. 2009, 8, 1008.
[5]
(c) Antony, S.; Agama, K. K.; Miao, Z.-H.; Takagi, K.; Wright, M. H.; Robles, A. I.; Varticovski, L.; Nagarajan, M.; Morrell, A.; Cushman, M.; Pommier, Y. Cancer Res. 2007, 67, 10397.
[6]
Khadka, D. B.; Le, Q.-M.; Yang, S.-H.; Van, H. T. M.; Le, T. N.; Cho, S.-H.; Kwon, Y.; Lee, K.-T.; Lee, E.-S.; Cho, W.-J. Bioorg. Med. Chem. 2011, 19, 1924.
[7]
Zhang, S.-M.; Sun, H.-P.; Jia, J.-M.; Xu, X.-L.; You, Q.-D. J. China Pharm. Univ. 2013, 44, 589. (in Chinese)
[7]
(张圣淼, 孙昊鹏, 贾剑敏, 徐晓莉, 尤启冬, 中国药科大学学报, 2013, 44, 589.)
[8]
(a) Cuerva, C.; Campo, J. A.; Cano, M.; Lodeiro, C. Chem. Eur. J. 2019, 25, 12046.
[8]
(b) Fu, G.; Zheng, H.; He, Y.; Li, W.; Lü, X.; He, H. J. Mater. Chem. C 2018, 6, 10589.
[8]
(c) Liang, P.; Kobayashi, A.; Hasegawa, T.; Yoshida, M.; Kato, M. Eur. J. Inorg. Chem. 2017, 2017, 5134.
[9]
(a) Guo, T.; Yu, L.; Zhao, B.; Li, Y.; Tao, Y.; Yang, W.; Hou, Q.; Wu, H.; Cao, Y. Macromol. Chem. Phys. 2012, 213, 820.
[9]
(b) Ohno, K.; Hasebe, M.; Nagasawa, A.; Fujihara, T. Inorg. Chem. 2017, 56, 12158.
[10]
Hariharan, P. S.; Mothi, E. M.; Moon, D.; Anthony, S. P. ACS Appl. Mater. Inter. 2016, 8, 33034.
[11]
(a) Chen, Z.-K.; Wang, B.-J.; Zhang, J.-T.; Yu, W.-L.; Liu, Z.-X.; Zhang, Y.-H. Org. Chem. Front. 2015, 2, 1107.
[11]
(b) Li, B. J.; Wang, H. Y.; Zhu, Q.-L.; Shi, Z.-J. Angew. Chem. Int. Ed. 2012, 51, 3948.
[11]
(c) Xie, F.; Yu, S.; Qi, Z.; Li, X.-W. Angew. Chem. Int. Ed. 2016, 55, 15351.
[11]
(d) Kuai, C.; Wang, L.; Li, B.; Yang, Z.; Cui, X.-L. Org. Lett. 2017, 19, 2102.
[11]
(e) Lou, J.; Wang, Q.; Zhou, Y. G.; Yu, Z. Org. Lett. 2019, 21, 9217.
[11]
(f) Yao, Q.-J.; Huang, F.-R.; Chen, J.-H.; Zhong, M.-Y.; Shi, B.-F. Angew. Chem. Int. Ed. 2023, 62, e202218533.
[11]
(g) Qian, P.-F.; Zhou, T.; Li, J.-Y.; Zhou, Y.-B.; Shi, B.-F. ACS Catal. 2022, 12, 13876.
[12]
Thakur, R.; Jaiswal, Y.; Kumar, A. Org. Biomol. Chem. 2019, 17, 9829.
[13]
For selected reviews: (a) Gujjarappa, R.; Vodnala, N.; Malakar, C. C. Adv. Synth. Catal. 2020, 362, 4896.
[13]
(b) Borah, G.; Dam, B.; Patel, B. K. ChemistrySelect. 2022, 7, e202104583.
[14]
For selected examples: (a) Wang, Q.; Li, X.-W. Org. Chem. Front. 2016, 3, 1159.
[14]
(b) He, Y.; Li, W.; Zhou, H.; Zeng, G.; Chen, Z.; Ge, J.-Y.; Lv, N.; Chen, J.-X. Adv. Synth. Catal. 2022, 364, 3730.
[14]
(c) Han, X.; Gao, F.; Li, C.; Fang, D.; Xie, X.; Zhou, Y.; Liu, H. J. Org. Chem. 2020, 85, 6281.
[14]
(d) Li, Z.; Xie, J.; Lu, P.; Wang, Y.-G. J. Org. Chem. 2020, 85, 5525.
[14]
(e) Wang, H.; Li, L.; Yu, S.; Li, Y.; Li, X.-W. Org. Lett. 2016, 18, 2914.
[15]
For selected examples with cyclic α-diazo-1,3-diketones as C2 synthons, see: (a) Yang, C.; He, X.; Zhang, L.; Han, G.; Zuo, Y.; Shang, Y. J. Org. Chem. 2017, 82, 2081.
[15]
(b) Zuo, Y.; He, X.; Ning, Y.; Zhang, L.; Wu, Y.; Shang, Y. New J. Chem. 2018, 42, 1673.
[15]
(c) Yan, K.; Li, B.; Wang, B. Adv. Synth. Catal. 2018, 360, 2113.
[15]
(d) Zuo, Y.; He, X.; Ning, Y.; Wu, Y.; Shang, Y. J. Org. Chem. 2018, 83, 13463.
[15]
(e) Zuo, Y.; He, X.; Ning, Y.; Wu, Y.; Shang, Y. ACS Omega. 2017, 2, 8507.
[16]
(a) Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 10386.
[16]
(b) Anukumar, A.; Tamizmani, M.; Jeganmohan, M. J. Org. Chem. 2018, 83, 8567.
[17]
For selected examples: (a) Li, H.; Lu, Y.; Xu, N.; Jin, X.; Chen, T.; Yu, J.; Liu, J. J. Org. Chem. 2024, 89, 1301.
[17]
(b) Li, J.; Li, H.; Fang, D.; Liu, L.; Han, X.; Sun, J.; Li, C.; Zhou, Y.; Ye, D.; Liu, H. J. Org. Chem. 2021, 86, 15217.
[18]
Wang, Q.; Li, X.-W. Org. Lett. 2016, 18, 2102.
[19]
For selected examples: (a) Inami, A.; Nishii, Y.; Hirano, K.; Miura, M. Org. Lett. 2023, 25, 3206.
[19]
(b) Shi, X.; Wang, R.; Zeng, X.; Zhang, Y.; Hu, H.; Xie, C.; Wang, M. Adv. Synth. Catal. 2018, 360, 4049.
[19]
(c) Yang, X.; Jie, J.; Li, H.; Piao, M. RSC Adv. 2016, 6, 57371.
Outlines

/