Article

Preparation of Polyvinylidene Fluoride-Hexafluoropropylene Electrolyte Membrane by Electrospinning Method for Electrochemical Actuators

  • Shasha Wang ,
  • Penghui Meng ,
  • Yang Li ,
  • Huichan Deng ,
  • Zhixiang Guo ,
  • Yiren Liu ,
  • Naien Shi ,
  • Ying Wei ,
  • Linghai Xie
Expand
  • a Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
    b Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou 350117, China

Received date: 2024-02-07

  Online published: 2024-05-29

Supported by

Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY222157); Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221085); State Key Laboratory of Organic Electronics and Information Display(GZR2022010008); Key Laboratory of Low-dimensional Materials Chemistry of Jiangsu Province(JSKC20022); National Overseas Study Fund(202008320051); National Basic Science Center(62288102)

Abstract

The microstructure of the electrolyte layer in electrochemical actuators significantly influences ion storage and transport, mechanical properties, and the final actuator deformation performance. In this study, two types of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) electrolyte films with varying fiber diameters were prepared by electrospinning for electrochemical actuators. We controlled the diameters of the fibers by adjusting the concentrations of the polymer solution, while the film is carefully controlled to a consistent size in length, width, and thickness. Subsequently, the fiber film was immersed in the ionic liquid to achieve excellent electrolyte film performance. A poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) electrode thin film was prepared using a drop coating method. Finally, an electrochemical actuator was prepared by hot pressing the electrode and electrolyte films. Compared with the drop-coated electrolyte film, the electrospun counterparts exhibit an excellent flexibility and a porous structure. Among them, the film with a larger fiber diameter (PVDF-HFP 22% (w)) reveals better tensile stress (7.52 MPa), tensile strain (235%), porosity (74%) and surface capacitance (39.8 mF•cm-2), and its tip displacement is 9.6 mm at ±0.5 V and 0.1 Hz, which is 1.48 times that of the smaller fiber diameter sample (PVDF-HFP 16% (w)) and 3.69 times that of the drop-coated sample, respectively. When at ±2 V and 0.1 Hz, the displacement is as high as 24.3 mm, which is 1.19 times that of the smaller fiber diameter sample (PVDF-HFP 16% (w)) and 1.46 times that of the drop-coated sample, respectively. Under the driving voltage of ±0.5 V and 0.1 Hz, after 10000 cycles, the driving displacement of PVDF-HFP 22% (w) electrochemical actuator can still reach 98% compared with the initial state. By improving the microstructures of electrolyte films through electrospinning, we successfully realized the preparation of high-performance electrochemical actuators, which provides a new idea for the development of soft robots in the future.

Cite this article

Shasha Wang , Penghui Meng , Yang Li , Huichan Deng , Zhixiang Guo , Yiren Liu , Naien Shi , Ying Wei , Linghai Xie . Preparation of Polyvinylidene Fluoride-Hexafluoropropylene Electrolyte Membrane by Electrospinning Method for Electrochemical Actuators[J]. Acta Chimica Sinica, 2024 , 82(6) : 570 -576 . DOI: 10.6023/A24020049

References

[1]
Mahato, M.; Tabassian, R.; Nguyen, V. H.; Oh, S.; Nam, S.; Hwang, W.-J.; Oh, I.-K. Nat. Commun. 2020, 11, 5358.
[2]
Garai, M.; Mahato, M.; Nam, S.; Kim, E.; Seo, D.; Lee, Y.; Nguyen, V. H.; Oh, S.; Sambyal, P.; Yoo, H.; Taseer, A. K.; Syed, S. A.; Han, H.; Ahn, C. W.; Kim, J.; Oh, I.-K. Adv. Funct. Mater. 2023, 33, 2212252.
[3]
Mahato, M.; Garai, M.; Nguyen, V.-H.; Oh, S.; Nam, S.; Zeng, X.-R.; Yoo, H.; Tabassian, R.; Oh, I.-K. Sci. Adv. 2023, 9, eadk9752.
[4]
Nguyen, V. H.; Oh, S.; Mahato, M.; Tabassian, R.; Yoo, H.; Lee, S.-G.; Garai, M.; Kim, K. J.; Oh, I.-K. Nat. Commun. 2024, 15, 435.
[5]
Mahato, M.; Hwang, W.-J.; Tabassian, R.; Oh, S.; Nguyen, V. H.; Nam, S.; Kim, J.-S.; Yoo, H.; Taseer, A. K.; Lee, M.-J.; Zhang, H.-P.; Song, T. E.; Oh, I.-K. Adv. Mater. 2022, 34, 2203613.
[6]
Zhang, D.-J.; Liu, J.; Chen, B.; Wang, J.-X.; Jiang, L. Acta Chim. Sinica 2018, 76, 425. (in Chinese)
[6]
(张大杰, 刘捷, 陈波, 王京霞, 江雷, 化学学报, 2018, 76, 425.)
[7]
Wang, G.-G.; Zhang, J.-Z.; Liu, S.-R.; Wang, X.-H.; Liu, X.-Y.; Chen, J.-Z. Acta Polym. Sin. 2021, 52, 124. (in Chinese)
[7]
(王格格, 张居中, 刘水任, 王向红, 刘旭影, 陈金周, 高分子学报, 2021, 52, 124.)
[8]
Wang, S.-S.; Li, Y.-A.; Deng, H.-C.; Guo, Z.-X.; Kan, Y.-H.; Cao, H.-T.; Xie, L.-H. Chin. Sci. Bull. 2024, 69, 578. (in Chinese)
[8]
(汪莎莎, 李延昂, 邓慧婵, 郭志翔, 阚玉和, 曹洪涛, 解令海, 科学通报, 2024, 69, 578.)
[9]
Yan, Y.-S.; Santaniello, T.; Bettini, L. G.; Minnai, C.; Bellacicca, A.; Porotti, R.; Denti, I.; Faraone, G.; Merlini, M.; Lenardi, C.; Milani, P. Adv. Mater. 2017, 29, 1606109.
[10]
Yu, F.; Ciou, J.-H.; Chen, S.-H.; Poh, W. C.; Chen, J.; Chen, J.-T.; Haruethai, K.; Lv, J.; Gao, D.; Lee, P. S. Nat. Commun. 2022, 13, 390.
[11]
Kim, O.; Kim, H.; Choi, U. H.; Park, M. J. Nat. Commun. 2016, 7, 13576.
[12]
Pang, D.; Alhabeb, M.; Mu, X.-P.; Dall'Agnese, Y.; Gogotsi, Y.; Gao, Y. Nano Lett. 2019, 19, 7443.
[13]
Wu, G.; Wu, X.-J.; Xu, Y.-J.; Cheng, H.-Y.; Meng, J.-K.; Yu, Q.; Shi, X.; Zhang, K.; Chen, W.; Chen, S. Adv. Mater. 2019, 31, 1806492.
[14]
Tabassian, R.; Kim, J.; Nguyen, V. H.; Kotal, M.; Oh, I.-K. Adv. Funct. Mater. 2018, 28, 1705714.
[15]
Shi, Y.-X.; Wu, Y.; Wang, S.-Q.; Zhao, Y.-Y.; Li, T.; Yang, X.-Q.; Zhang, T. J. Am. Chem. Soc. 2021, 143, 4017.
[16]
Liu, C.-Y.; Cao, S.-Y.; Yoshio, M. Adv. Funct. Mater. 2023, 2300538.
[17]
Manzoor, M. T.; Nguyen, V.-H.; Umrao, S.; Kim, J.-H.; Tabassian, R.; Kim, J.-E.; Oh, I.-K. Adv. Funct. Mater. 2019, 29, 1905454.
[18]
Nguyen, V. H.; Kim, J.; Tabassian, R.; Kotal, M.; Jun, K.; Oh, J.-H.; Son, J.-M.; Manzoor, M. T.; Kim, K.-J.; Oh, I.-K. Adv. Sci. 2019, 6, 1801196.
[19]
Raza, U.; Oh, S.; Tabassian, R.; Mahato, M.; Nguyen, V. H.; Oh, I.-K. Sens. Actuators B Chem. 2022, 352, 131006.
[20]
Wang, F.; Huang, D.-L.; Li, Q.-C.; Wu, Y.-J.; Yan, B.; Wu, Z.-Y.; Park, S. Compos. Sci. Technol. 2023, 231, 109845.
[21]
Wang, F.; Kong, Y.; Shen, F.-F.; Wang, Y.-F.; Wang, D.-H.; Li, Q.-C. Compos. Part B Eng. 2022, 228, 109436.
[22]
Yang, G.; Li, X.-L.; He, Y.; Ma, J.-K.; Ni, G.-L.; Zhou, S.-B. Prog. Polym. Sci. 2018, 81, 80.
[23]
Ma, S.-Q.; Zhang, Y.-P.; Liang, Y.-H.; Ren, L.; Tian, W.-J.; Ren, L.-Q. Adv. Funct. Mater. 2020, 30, 1908508.
[24]
Kim, S.; Kim, S.; Ho, D.-H.; Roe, D.-G.; Choi, Y.-J.; Kim, M.-J.; Kim, U.-J.; Le, M.-L.; Kim, J.; Kim, S.-H.; Cho, J.-H. Sci. Adv. 2022, 8, eabo3326.
Outlines

/