Photoluminescence Properties of CsZn2B3O7:Eu2+ Broadband Green-emitting Phosphor for White Light-emitting Diodes
Received date: 2024-04-19
Online published: 2024-06-06
Supported by
Natural Science Basic Research Program of Shaanxi Province(2024JC-YBMS-384); Basic Science Research Project of Shaanxi Academy of Fundamental Sciences (Chemistry, Biology)(23JHQ077); Innovation and Entrepreneurship Training Program for Students of Xi'an University of Architecture and Technology(202310703048)
Near-ultraviolet pumped white light-emitting diodes (NUV-WLED), which are based on the combination of NUV LED chip with red, green and blue trichromatic phosphors, can effectively alleviate the "blue light harm" and improve the color rendering index. However, developing broadband tricolor phosphor with lower synthesis temperature is the key for large-scale application of NUV-WLED. In this study, CsZn2B3O7 (hereinafter abbreviated as CZBO) with low synthesis temperature and multiple cationic sites was selected as the matrix material. A series of Cs1-xZn2B3O7:xEu2+ (0.005≤x≤0.03, hereinafter abbreviated as CZBO:xEu2+) broadband green phosphors were synthesized by high-temperature solid-state reaction method. The emission peak and full width at half maximum of CZBO:xEu2+ green phosphor are 508 nm and 109 nm, respectively. CZBO:xEu2+ phosphors exhibit a broadband absorption around 373 nm, which can be well matched with 365 nm ultraviolet LED chips. There are three Eu2+ luminescence centers in the CZBO:xEu2+ phosphors, i.e. the Eu2+ ions occupied in the Cs(1), Cs(2) and Cs(3) sites, respectively. The optimal doping concentration of Eu2+ ions is 0.015, and the concentration quenching mechanism is dipole-dipole interaction. CZBO:0.015Eu2+ phosphor shows good chemical stability, whose emission intensity can still remain 98.7% of that of the pristine sample after being exposed to ambient atmosphere for 30 d. The color rendering index of LED device fabricated by coating CZBO:0.015Eu2+ green phosphor, commercial BaMg- Al10O17:Eu2+ blue phosphor and commercial (Ca,Sr)AlSiN3:Eu2+ red phosphor on a 365 nm ultraviolet LED chip is as high as 87. This fabricated LED device shows a stable warm white light emission under different currents (30~300 mA), and its color coordinates, color rendering index and related color temperature are almost unchanged. These results indicate that the CZBO:0.015Eu2+ green phosphor reported in this study has a potential application prospect in the field of ultraviolet LED chip driven white light emitting diode lighting.
Lei Chen , Hanyue Zhang , Qing Qing , Fang Song , Liping Li , Zhihua Leng . Photoluminescence Properties of CsZn2B3O7:Eu2+ Broadband Green-emitting Phosphor for White Light-emitting Diodes[J]. Acta Chimica Sinica, 2024 , 82(8) : 894 -902 . DOI: 10.6023/A24040135
[1] | Meng, X. G.; Zhou, Q.; Xu, Y. C.; Liu, C. H.; Yang, W. B.; Lin, X. Y.; Wang, J. W. J. Chin. Soc. Rare Earth. 2023, 41, 272 (in Chinese). |
[1] | (孟宪国, 周琼, 许英朝, 刘春辉, 杨伟斌, 林翔宇, 王嘉伟, 中国稀土学报, 2023, 41, 272). |
[2] | Zhao, Y. C.; Zhang, R. B.; Wang, J. J.; Gong, G. L.; Huang, J. H. J. Chin. Soc. Rare Earth. 2023, 41, 853 (in Chinese). |
[2] | (赵宇聪, 张汝彬, 王俊杰, 龚国亮, 黄建辉, 中国稀土学报, 2023, 41, 853). |
[3] | Chen, H. M.; Wang, L.; Zhang, P.; Bai, X. L.; Zhou, G. J. Acta Chim. Sinica 2023, 81, 771 (in Chinese). |
[3] | (陈慧敏, 王龙, 张盼, 白西林, 周国君, 化学学报, 2023, 81, 771). |
[4] | Zhang, D.; Zheng, B.; Zheng, Z.; Li, L.; Yang, Q.; Song, Y.; Zou, B.; Zou, H. F. Chem. Eng. J. 2022, 431, 133805. |
[5] | Zhang, Y. J.; Zhang, Z. L.; Liu, X. D.; Shao, G. Z.; Shen, L. L.; Liu, J. M.; Xiang, W. D.; Liang, X. J. Chem. Eng. J. 2020, 401, 125983. |
[6] | Zhong, J. Y.; Zhuo, Y.; Hariyani, S.; Zhao, W.; Wen, J.; Brgoch, J. Chem. Mater. 2019, 32, 882. |
[7] | Hariyani, S.; Brgoch, J. ACS Appl. Mater. Interfaces 2021, 13, 16669. |
[8] | Piao, S. Q.; Wang, Y. C.; Zhou, X. F.; Geng, W. Y.; Zhang, J. S.; Zhang, X. Z.; Wu, D. Y.; Cao, Y. Z.; Li, X. P.; Chen, B. J. ACS Sustainable Chem. Eng. 2021, 9, 7882. |
[9] | Qing, Q.; Yang, X. Y.; Liang, W. J.; Bai, H.; Ming, X. Y.; Tang, Z. B.; Song, F.; Leng, Z. H.; Li, L. P. J. Lumin. 2023, 263, 120001. |
[10] | Li, S. X.; Xia, Y. H.; Amachraa, M.; Hung, N. T.; Wang, Z. B.; Ong, S. P.; Xie, R. J. Chem. Mater. 2019, 31, 6286. |
[11] | Tian, H. D.; Seto, T.; Zhou, Y. H.; Liu, Z. Q.; Wang, Y. H. ACS Appl. Mater. Interfaces 2023, 15, 28215. |
[12] | Li, P. J. M.S. Thesis, Beijing Nonferrous Metal Research Institute, Beijing, 2023 (in Chinese). |
[12] | (李鹏杰, 硕士论文, 北京有色金属研究总院, 北京, 2023). |
[13] | Mahlik, S.; Barzowska, J.; Szczodrowski, K.; Majewska, N.; Grinberg, M.; Michalik, D.; Adamczyk, B. J.; Pawlik, T.; Rzychoń, T.; Adamczyk, A.; Sopicka-Lizer, M. J. Alloys Compd. 2021, 884, 161047. |
[14] | Li, S. X.; Wang, L.; Tang, D. M.; Cho, Y. J.; Liu, X. J.; Zhou, X. T.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N.; Xie, R. J. Chem. Mater. 2017, 30, 494. |
[15] | Liu, Z. Q.; Seto, T.; Tian, H. D.; Wang, Y. H. J. Lumin. 2023, 258, 119811. |
[16] | Li, H. R.; Liang, Y. J.; Liu, S. Q.; Zhang, W. L.; Bi, Y. Y.; Gong, Y. M.; Lei, W. Adv. Opt. Mater. 2021, 9, 2100799. |
[17] | Zhao, S. G.; Zhang, J.; Zhang, S.-Q.; Sun, Z. H.; Lin, Z. S.; Wu, Y. C.; Hong, M. C.; Luo, J. H. Inorg. Chem. 2014, 53, 2521. |
[18] | Bai, H.; Wu, G. D.; Qing, Q.; Hou, J. Y.; Liu, J. H.; Song, F.; Tang, Z. B.; Leng, Z. H. J. Lumin. 2022, 252, 119346. |
[19] | Leng, Z. H.; Zhang, D.; Bai, H.; He, H. B.; Qing, Q.; Zhao, J.; Tang, Z. B. J. Mater. Chem. C 2021, 9, 13722. |
[20] | Liu, W.; Li, X. L.; Liu, J.; Han, X.; Yan, J. H.; Kang, Z. H.; Lian, H. Z. Acta Chim. Sinica 2011, 69, 1565 (in Chinese). |
[20] | (刘伟, 李西林, 刘娟, 韩厦, 闫景辉, 康振辉, 连洪洲, 化学学报, 2011, 69, 1565). |
[21] | Qian, H. J.; Fan, C. L.; Hussain, F.; Song, K. X.; Luo, X. J.; Su, W. T.; Wang, H. P.; Huang, Q. M.; Yang, L. J. Lumin. 2021, 235, 117991. |
[22] | Li, W. Y.; Xie, R. J.; Zhou, T. L.; Liu, L. H.; Zhu, Y. Y. Dalton T. 2014, 43, 6132. |
[23] | Takeda, T.; Hirosaki, N.; Funahshi, S.; Xie, R. J. Chem. Mater. 2015, 27, 5892. |
[24] | Ding, J. Y.; Xu, Q. X.; He, J. Z.; Zhang, W. B.; Zhou, J. C.; Wu, Q. S. Mater. Chem. Front. 2021, 5, 7251. |
[25] | Liang, P.; Zhang, H. S.; Huang, H. S.; Li, S. Y.; Zhang, X. T.; Wang, Y.; Li, L. Q.; Liu, Z. H. Acta Chim. Sinica 2023, 81, 371 (in Chinese). |
[25] | (梁攀, 张宏淑, 黄宏升, 李飒英, 张笑恬, 王英, 李连庆, 刘志宏, 化学学报, 2023, 81, 371). |
[26] | Leng, Z. H.; Li, R. F.; Li, L. P.; Xue, D. K.; Zhang, D.; Li, G. S.; Chen, X. Y.; Zhang, Y. ACS Appl. Mater. Interfaces 2018, 10, 33322. |
[27] | Hou, J. S.; Shi, J.; Dong, L. P.; Wu, J. H.; Zhang, G. H.; Chen, H. J.; Gao, W.; Fang, Y. Z. J. Lumin. 2024, 270, 120578. |
[28] | Leng, Z. H.; Bai, H.; Qing, Q.; He, H. B.; Hou, J. Y.; Li, B.; Tang, Z. B.; Song, F.; Wu, H. Y. ACS Sustainable Chem. Eng. 2022, 10, 10966. |
[29] | Liu, Z. Q.; Li, Z. B.; Seto, T.; Wang, Y. H. Adv. Opt. Mater. 2023, 11, 2300845. |
[30] | Zhang, J. R.; Huang, D. C.; Huang, C. C.; Liang, S. S.; Zhu, H. M. Acta Chim. Sinica 2022, 80, 453 (in Chinese). |
[30] | (张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼, 化学学报, 2022, 80, 453.) |
[31] | Liu, L.; Peng, S. S.; Fu, L.; Guo, Y. X.; Sun, X.; Song, L.; Shi, J. P.; Zhang, Y. ACS Sustainable Chem. Eng. 2022, 10, 6190. |
/
〈 |
|
〉 |