Communication

Novel Chiral Tridentate PNN Ligand Manganese Complex for Enantioselective Hydrogenation of Aromatic Ketones

  • Xingxing Jiang ,
  • Weilong Wu ,
  • Huiying Ren ,
  • Feng Zhang ,
  • Wenzhi Mo ,
  • Zhiqiang Lu
Expand
  • a College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
    b College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China

Received date: 2024-04-08

  Online published: 2024-06-21

Supported by

Key Scientific Research Projects of Higher Education of Henan Province(24A150026); Key Scientific Research Projects of Higher Education of Henan Province(23A150027); Research and practice of teaching reform of Henan Province(GJ[2023]388111); Henan Province teacher education curriculum reform research project(2024-JSJYYB-043)

Abstract

Since the first-raw metals have higher metal contamination limitations in pharmaceutical compounds and cheaper. Extensive global efforts have been devoted to the development of chiral catalysts with earth abundant, inexpensive, and nontoxic transitions metals. Nevertheless, non-precious metal catalysts in ketone hydrogenation are still far from satisfactory in terms of activity, selectivity and substrate scope. Recently, much effort has been devoted to the development of powerful chiral ligands for manganese-catalyzed enantioselective ketone hydrogenation. Based on this, in this work, we synthesized a series of three-toothed PNN ligands L1~L4 by introducing 8-aminoquinoline skeleton into facial chiral ferrocene, and applied these ligands to Mn-catalyzed asymmetric hydrogenation of a broad spectrum of ketones (49 examples) with high activities (1000 TON) and high enantioselectivities (up to 98% ee) using K2CO3 and EtOH as an industrially desirable base and solvent. To further demonstrate the utility of the developed Mn catalytic system, we applied it to the catalytic asymmetric hydrogenation of α-aminoketones (1-49, 1.46 g) with gram-scale and successfully obtained β-aminoalcohols (S)-2-49 in 1.25 g, 97% isolated yield and 81% ee within 24 h at 50 ℃ under hydrogen pressure of 4 MPa. Notably, the product (S)-2-49 is a key intermediate of (S)-phenylephrine. Although our attempts to get the crystal structure of Mn-L1 failed, the data of high resolution mass spectra and infrared spectra analysis strongly supported the hypothesized structure of Mn-L1, which contains two CO molecules.

Cite this article

Xingxing Jiang , Weilong Wu , Huiying Ren , Feng Zhang , Wenzhi Mo , Zhiqiang Lu . Novel Chiral Tridentate PNN Ligand Manganese Complex for Enantioselective Hydrogenation of Aromatic Ketones[J]. Acta Chimica Sinica, 2024 , 82(7) : 736 -741 . DOI: 10.6023/A24040120

References

[1]
For selected examples, see: (a) Rogawski M. A.; L?scher W. Nat. Rev. Neurosci. 2004, 5, 553.
[1]
(b) Creighton C. J.; Ramabadran K.; Ciccone P. E.; Liu J.; Orsini M. J.; Reitz A. B. Bioorg. Med. Chem. Lett. 2004, 14, 4083.
[1]
(c) Almeida L.; Soares-Da-Silva P. Neurotherapeutics 2007, 4, 88.
[1]
(d) Cui J. J.; Tran-Dubé M.; Shen H.; Nambu M.; Kung P.-P.; Pairish M.; Jia L.; Meng J.; Funk L.; Botrous I.; McTigue M.; Grodsky N.; Ryan K.; Padrique E.; Alton G.; Timofeevski S.; Yamazaki S.; Li Q.; Zou H.; Christensen J.; Mroczkowski B.; Bender S.; Kania R. S.; Edwards M. P. J. Med. Chem. 2011, 54, 6342.
[1]
(e) Yan P. C.; Zhu G. L.; Xie J. H.; Zhang X. D.; Zhou Q. L.; Li Y. Q.; Shen W. H.; Che D. Q. Org. Process Res. Dev. 2013, 17, 307.
[1]
(f) Qian J. Q.; Yan P. C.; Che D. Q.; Zhou Q. L.; Li Y. Q. Tetrahedron Lett. 2014, 55, 1528.
[1]
(g) Flick A. C.; Leverett C. A.; Ding H. X.; McInturff E.; Fink S. J.; Helal C. J.; De Forest J. C.; Morse P. D.; Mahapatra S.; O’Donnell C. J. J. Med. Chem. 2020, 63, 10652.
[1]
(h) He P.; Zheng H.; Liu X.; Lian X.; Lin L.; Feng X. M. Chem. Eur. J. 2014, 20, 13482.
[2]
For selected examples, see: (a) Noyori R.; Ohkuma T. Angew. Chem. Int. Ed. 2001, 40, 40.
[2]
(b) Mortreux A.; Karim A. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007.
[2]
(c) Yang G. Q.; Zhang W.-B. Chem. Soc. Rev. 2018, 47, 1783.
[2]
(d) Zhang Z. F.; Butt N. A.; Zhang W. B. Chem. Rev. 2016, 116, 14769.
[2]
(e) Malacea R.; Poli R.; Manoury E. Coord. Chem. Rev. 2010, 254, 729.
[2]
(f) Xie J. H.; Zhou Q. L. Acta Chim. Sinica 2012, 70, 1427 (in Chinese).
[2]
(谢建华, 周其林, 化学学报, 2012, 70, 1427.)
[2]
(g) Wang H.; Wen J.; Zhang X. Chem. Rev. 2021, 121, 7530.
[2]
(h) Alig L.; Fritz M.; Schneider S. Chem. Rev. 2019, 119, 2681.
[2]
(i) Zhang L.; Liu C.; Sun M.; Liang C.; Cao L.; Yao X.; Ma Y.; Cheng R.; Ye J. J. Org. Chem. 2023, 88, 2942.
[2]
(j) Yin C.; Jiang Y.-F.; Huang F.; Xu C.-Q.; Pan Y.; Gao S.; Chen G.-Q.; Ding X.; Bai S.-T.; Lang Q.; Li J.; Zhang X. Nat. Commun. 2023, 14, 3718.
[2]
(k) Bao D. H.; Wu H. L.; Liu C. L.; Xie J. H.; Zhou Q. L. Angew. Chem. Int. Ed. 2015, 54, 8791.
[2]
(l) Zhang F. H.; Zhang F. J.; Li M. L.; Xie J. H.; Zhou Q. L. Nat. Catal. 2020, 3, 621.
[2]
(m) Wu W. L.; Zhao N.; Liu Y.; Du S.; Wang X.; Mo W.; Yan X.; Xu C.; Zhou Y.; Ji B. Org. Lett. 2023, 25, 8845.
[3]
For a review, see: (a) Zhang Z.; Butt N. A.; Zhou M.; Liu D.; Zhang W. Chin. J. Chem. 2018, 36, 443.
[3]
(b) Filonenko G. A.; van Putten R.; Hensen E. J. M.; Pidko E. A. Chem. Soc. Rev. 2018, 47, 1459.
[4]
(a) Shimizu H.; Igarashi D.; Kuriyama W.; Yusa Y.; Sayo N.; Saito T. Org. Lett. 2007, 9, 1655.
[4]
(b) Junge K.; Wendt B.; Addis D.; Zhou S.; Das S.; Fleischer S.; Beller M. Chem. Eur. J. 2011, 17, 101.
[4]
(c) Krabbe S. W.; Hatcher M. A.; Bowman R. K.; Mitchell M. B.; McClure M. S.; Johnson J. S. Org. Lett. 2013, 15, 4560.
[4]
(d) Zatolochnaya O. V.; Rodríguez S.; Zhang Y.; Lao K. S.; Tcyrulnikov S.; Li G.; Wang X.-J.; Qu B.; Biswas S.; Mangunuru H. P. R.; Rivalti D.; Sieber J. D.; Desrosiers J.-N.; Leung J. C.; Grinberg N.; Lee H.; Haddad N.; Yee N. K.; Song J. J.; Kozlowski M. C.; Senanayakea C. H. Chem. Sci. 2018, 9, 4505.
[5]
(a) Hamada Y.; Koseki Y.; Fujii T.; Maeda T.; Hibino T.; Makino K. Chem. Commun. 2008, 6206.
[5]
(b) Hibino T.; Makino K.; Sugiyama T.; Hamada Y. ChemCatChem 2009, 1, 237.
[5]
(c) Cai X. H.; Chen J. Z.; Zhang W. B. Acta Chim. Sinica 2023, 81, 646 (in Chinese).
[5]
(蔡新红, 陈建中, 张万斌, 化学学报, 2023, 81, 646.)
[5]
(d) Ding Y. X.; Zhou Y. G. Chin. J. Org. Chem. 2022, 42, 2994 (in Chinese).
[5]
(丁艺璇, 周永贵, 有机化学, 2022, 42, 2994.)
[6]
(a) Berkessel A.; Reichau S.; von der H?h A.; Leconte N.; Neud?rfl J.-M. Organometallics 2011, 30, 3880.
[6]
(b) Gajewski P.; Renom-Carrasco M.; Facchini S. V.; Pignataro L.; Lefort L.; de Vries J. G.; Ferraccioli R.; Forni A.; Piarulli U.; Gennari C. Eur. J. Org. Chem. 2015, 1887.
[6]
(c) Hodgkinson R.; Del Grosso A.; Clarkson G. J.; Wills M. Dalton Trans. 2016, 3992.
[7]
(a) Zhang D.; Zhu E.-Z.; Lin Z.-W.; Li Y.-Y.; Gao J.-X. Asian J. Org. Chem. 2016, 5, 1323.
[7]
(b) Friedfeld M. R.; Shelvin M.; Hoyt J. M.; Krska S. W.; Tudge M. T.; Chirik P. J. Science 2013, 342, 1076.
[7]
(c) Friedfeld M. R.; Margulieux G. W.; Schaefer B.; Chirik P. J. J. Am. Chem. Soc. 2014, 136, 13178.
[7]
(d) Chirik P. J. Acc. Chem. Res. 2015, 48, 1687.
[7]
(e) Friedfeld M. R.; Zhong H.; Ruck R. T.; Shelvin M.; Chirik P. J. Science 2018, 360, 888.
[7]
(f) Monfette S.; Turner Z. R.; Semproni S. P.; Chirik P. J. J. Am. Chem. Soc. 2012, 134, 4561.
[7]
(g) Friedfeld M. R.; Shevlin M.; Margulieux G. W.; Campeau L. C.; Chirik P. J. J. Am. Chem. Soc. 2016, 138, 3314.
[7]
(h) Du T. Wang B.; Wang C.; Xiao J.; Tang W. Chinese Chem. Lett. 2021, 32, 1241.
[7]
(i) Elangovan S.; Topf C.; Fischer S.; Jiao H.; Spannenberg A.; Baumann W.; Ludwig R.; Junge K.; Beller M. J. Am. Chem. Soc. 2016, 138, 8809.
[8]
(a) Wang Y.; Zhu L.; Shao Z.; Li G.; Lan Y.; Liu Q. J. Am. Chem. Soc. 2019, 141, 17337.
[8]
(b) Kallmeier F.; Kempe R. Angew. Chem. Int. Ed. 2018, 57, 46.
[8]
(c) Garbe M.; Junge K.; Beller M. Eur. J. Org. Chem. 2017, 4344.
[8]
(d) Maji B.; Barman M. K. Synthesis 2017, 49, 3377.
[8]
(e) Gulyaeva E. S.; Osipova E. S.; Buhaibeh R.; Canac Y.; Sortais J. B.; Valyaev D. A. Coord. Chem. Rev. 2022, 458, 21442.
[8]
(f) Das K.; Waiba S.; Jana A.; Maji B. Chem. Soc. Rev. 2022, 51, 4386.
[8]
(g) Wang Y.; Wang M.; Li Y.; Liu Q. Chem 2021, 7, 1180.
[9]
Widegren M. B.; Harkness G. J.; Slawin A. M. Z.; Cordes D. B.; Clarke M. L. Angew. Chem. Int. Ed. 2017, 56, 5825.
[10]
(a) Yang J.; Yao L.; Wang Z.; Zuo Z.; Liu S.; Gao P.; Han M.; Liu Q.; Solan G. A.;Sun. W. -H. J. Catal. 2023, 418, 40.
[10]
(b) Oates C. L.; Goodfellow A. S.; Bühl M.; Clarke M. L. Green Chem. 2023, 25, 3864.
[10]
(c) He J.; Mao W.; Lin J.; Wu Y.; Chen L.; Yang P.; Song D.; Zhu P.; Zhong W.; Ling F. Org. Chem. Front. 2023, 10, 3321.
[10]
(d) Wang Z.; Zhao X.; Huang A.; Yang Z.; Cheng Y.; Chen J.; Ling F.; Zhong W. Tetrahedron Lett. 2021, 82, 153389.
[10]
(e) Widegren M. B.; Clarke M. L. Catal. Sci. Technol. 2019, 9, 6047.
[10]
(f) Passera A.; Mezzetti A. Adv. Synth. Catal. 2019, 361, 4691.
[10]
(g) Zhang L.; Wang Z.; Han Z.; Ding K. Angew. Chem. Int. Ed. 2020, 59, 15565.
[10]
(h) Seo C. S. G.; Tsui B. T. H.; Gradiski M. V.; Smith S. A. M.; Morris R. H. Catal. Sci. Technol. 2021, 1, 3153.
[11]
Garbe M.; Junge K.; Walker S.; Wei Z.; Jiao H.; Spannenberg A.; Bachmann S.; Scalone M.; Beller M. Angew. Chem. Int. Ed. 2017, 56, 11237.
[12]
Zhang L.; Tang Y.; Han Z.; Ding K. Angew. Chem. Int. Ed. 2019, 58, 4973.
[13]
(a) Ling F.; Hou H.; Chen J.; Nian S.; Yi X.; Wang Z.; Song D.; Zhong W. Org. Lett. 2019, 21, 3937.
[13]
(b) Ling F.; Chen J.; Nian S.; Hou H.; Yi X.; Wu F.; Xu M.; Zhong W. Synlett 2020, 31, 285.
[14]
Zeng L.; Yang H.; Zhao M.; Wen J.; Tucker J. H. R.; Zhang X. ACS Catal. 2020, 10, 13794.
[15]
(a) Yuan M.-L.; Xie J. H.; Yang X.-H.; Zhou Q. L. Synthesis 2014, 46, 2910.
[15]
(b) Hu Y.; Wu W.; Dong X.-Q.; Zhang X. Org. Chem. Front. 2017, 4, 1499.
Outlines

/