Article

Bifunctional Electrocatalysts of Mn-doped Co3O4 for Oxygen Reduction and Oxygen Evolution Reactions in Alkaline Medium

  • Ziyi Shui ,
  • Sile Yu ,
  • Wei Lu ,
  • Liuyun Xu ,
  • Qingye Liu ,
  • Wei Zhao ,
  • Yilun Liu
Expand
  • a School of Chemical Engineering, Northwest University, Xi’an 710069
    b College of Chemistry & Chemical Engineering, Yan’an University, Yan’an 716000
    c BYD Automobile Co.,Ltd., Xi’an 710075
    d School of Aerospace Engineering, Xi'an Jiaotong University, Xi’an 710049

Received date: 2024-05-06

  Online published: 2024-07-10

Supported by

Natural Science Basic Research Program of Shaanxi(2023-JC-YB-046); Natural Science Foundation of Shaanxi Provincial Department of Education(23JK0723)

Abstract

Rechargeable zinc-air batteries (ZABs) have been extensively studied due to their high energy and power density, high safety and cost-effectiveness, which are considered to be one of the most promising clean power sources in the field of energy storage. Nevertheless, its practical application has been hampered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during the discharge and charge processes, respectively. It is well known that Pt and IrO2 are currently considered to be the most efficient ORR and OER catalysts. However, the high cost of precious metal catalysts has hindered their large-scale application. Herein, a series of spinel catalysts (Mnx-Co3O4, x=0, 0.5, 1, 1.5) are prepared by co-precipitation method to achieve bifunctional oxygen electrocatalysis in alkaline media. Meanwhile, the potential of these transition metal oxide catalytic materials as bifunctional catalysts in replacing precious metals has been further explored. The results show that Mn-Co3O4 has excellent ORR performance (onset potential of 0.85 V, half-wave potential of 0.69 V), and significantly enhanced OER performance (overpotential of 0.57 V, the electron transfer resistance of 26.14 Ω), thereby leading to excellent bifunctional property. Furthermore, density functional theory (DFT) calculations demonstrate that Mn and Co sites can serve as potential active sites for ORR and OER respectively, exhibiting significant synergistic effects in electrocatalytic processes. The characterization results further confirm that the doping of manganese in the catalyst preparation process increases the specific surface area and oxygen vacancies of the catalyst, adjusts the surface chemistry and electronic state of the catalyst, and thus improves the ORR and OER performance of the catalyst. In addition, the Mn-Co3O4 catalyst delivers high cycle life of up to 40 h in liquid rechargeable zinc air batteries. In summary, this work demonstrates that manganese-cobalt bimetallic synergistic catalysis is a promising strategy to enhance the electrocatalytic activity of ORR and OER.

Cite this article

Ziyi Shui , Sile Yu , Wei Lu , Liuyun Xu , Qingye Liu , Wei Zhao , Yilun Liu . Bifunctional Electrocatalysts of Mn-doped Co3O4 for Oxygen Reduction and Oxygen Evolution Reactions in Alkaline Medium[J]. Acta Chimica Sinica, 2024 , 82(10) : 1039 -1049 . DOI: 10.6023/A24050152

References

[1]
Ishihara, T.; Yokoe, K.; Miyano, T.; Kusaba, H. Electrochim. Acta 2019, 300 455.
[2]
Miao, H.; Wu, X.; Chen, B.; Wang, Q.; Wang, F.; Wang, J.; Zhang, C.; Zhang, H.; Yuan, J.; Zhang, Q. Electrochim. Acta 2020, 333 135566.
[3]
Dai, Y.; Yu, J.; Cheng, C.; Tan, P.; Ni, M. Chem. Eng. J. 2020, 397 125516.
[4]
Lankauf, K.; Cysewska, K.; Karczewski, J.; Mielewczyk-Gryń, A.; Górnicka, K.; Cempura, G.; Chen, M.; Jasiński, P.; Molin, S. Int. J. Hydrogen Energy 2020, 45 14867.
[5]
Wu, X.; Miao, H.; Hu, R.; Chen, B.; Yin, M.; Zhang, H.; Xia, L.; Zhang, C.; Yuan, J. Appl. Surf. Sci. 2021, 536 147806.
[6]
Béjar, J.; álvarez-Contreras, L.; Ledesma-García, J.; Arjona, N.; Arriaga, L. G. J. Electroanal. Chem. 2019, 847 113190.
[7]
Wang, Y.; Zhang, L.; Hu, T. Acta Chim. Sinica 2015, 73 316 (in Chinese).
[7]
(王瀛, 张丽敏, 胡天军, 化学学报, 2015, 73 316.)
[8]
Liu, H.; Zhu, X.; Li, M.; Tang, Q.; Sun, G.; Yang, W. Electrochim. Acta 2014, 144 31.
[9]
Liu, J.; Yang, N.; Li, L.; Wei, Z. Acta Chim. Sinica 2023, 81 1478 (in Chinese).
[9]
(刘金晶, 杨娜, 李莉, 魏子栋, 化学学报, 2023, 81 1478.)
[10]
Shi, C.; Ullah, S.; Li, K.; Wang, W.; Zhang, R.; Pan, L.; Zhang, X.; Zou, J.-J. Chinese J. Catal. 2020, 41 1818.
[11]
Chang, J.; Wang, W.; Wang, Y.; Su, C.; Pan, J.; Wang, H.; Song, H. J. Taiwan Inst. Chem. Eng. 2021, 129 144.
[12]
Fujiwara, N.; Nagai, T.; Ioroi, T.; Arai, H.; Ogumi, Z. J. Power Sources 2020, 451 227736.
[13]
Hu, S.; Wang, J.; Zhang, J.; Lim, J.; Gao, Y.; Zhang, S. Appl. Catal. B: Environ. 2021, 282 119593.
[14]
Sun, Y.-R.; Zhang, X.; Wang, L.-G.; Liu, Z.-K.; Kang, N.; Zhou, N.; You, W.-L.; Li, J.; Yu, X.-F. Chem. Eng. J. 2021, 421 129698.
[15]
Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat. Mater. 2011, 10 780.
[16]
Song, K.; Yuan, L.; Li, Z.; Lv, Y.; Yang, B.; Yu, Y.; Shen, X.; Hu, X. Electrochim. Acta 2020, 353 136572.
[17]
Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M. T.; Croft, M.; Gopalakrishnan, J.; Pena, M. A.; Hadermann, J.; Greenblatt, M.; Rojas, S. ACS Appl. Mater. Interfaces 2019, 11 21454.
[18]
Jung, J.-I.; Risch, M.; Park, S.; Kim, M. G.; Nam, G.; Jeong, H.-Y.; Shao-Horn, Y.; Cho, J. Energy & Environ. Sci. 2016, 9 176.
[19]
Kim, J.; Ko, W.; Yoo, J. M.; Paidi, V. K.; Jang, H. Y.; Shepit, M.; Lee, J.; Chang, H.; Lee, H. S.; Jo, J.; Kim, B. H.; Cho, S. P.; Lierop, J.; Kim, D.; Lee, K. S.; Back, S.; Sung, Y. E.; Hyeon, T. Adv. Mater. 2022, 34, e2107868.
[20]
Maile, N. C.; Moztahida, M.; Ghani, A. A.; Hussain, M.; Tahir, K.; Kim, B.; Shinde, S. K.; Fulari, V. J.; Lee, D. S. Chem. Eng. J. 2021, 421 129767.
[21]
Shui, Z.; He, N.; Chen, L.; Zhao, W.; Chen, X. Acta Chim. Sinica 2020, 78 557 (in Chinese).
[21]
(税子怡, 何娜娜, 陈黎, 赵炜, 陈曦, 化学学报, 2020, 78 557.)
[22]
Li, K.; Zhang, R.; Gao, R.; Shen, G.-Q.; Pan, L.; Yao, Y.; Yu, K.; Zhang, X.; Zou, J.-J. Appl. Catal. B: Environ. 2019, 244 536.
[23]
Li, Z.; Lv, Y.; Yu, Y.; Yin, J.; Song, K.; Yang, B.; Yuan, L.; Hu, X. J. Alloys Compd. 2020, 817 152736.
[24]
Ge, C.; Li, Q.; Hu, M.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. J. Power Sources 2022, 520 230868.
[25]
Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. J. Am. Chem. Soc. 2012, 134 3517.
[26]
Bae, J.; Shin, D.; Jeong, H.; Choe, C.; Choi, Y.; Han, J. W.; Lee, H. ACS Catal. 2021, 11 11066.
[27]
Zhu, F.; Zhang, J.; Yang, B.; Shi, X.; Lu, C.; Yin, J.; Yu, Y.; Hu, X. J. Alloys Compd. 2018, 749 433.
[28]
Li, C.; Han, X.; Cheng, F.; Hu, Y.; Chen, C.; Chen, J. Nat. Commun. 2015, 6 7345.
[29]
Zhang, W.; Li, M.; Wang, X.; Zhang, X.; Niu, X.; Zhu, Y. Appl. Surf. Sci. 2022, 590 153140.
[30]
Qin, C.; Wang, B.; Wang, Y. Sens. Actuators B: Chem. 2022, 351 130943.
[31]
Liu, Y.; Li, J.; Li, W.; Li, Y.; Chen, Q.; Zhan, F. J. Power Sources 2015, 299 492.
[32]
Cheng, H.; Chen, J. M.; Li, Q. J.; Su, C. Y.; Chen, A. N.; Zhang, J. X.; Liu, Z. Q.; Tong, Y. Chem. Commun. 2017, 53 11596.
[33]
Bae, J.; Shin, D.; Jeong, H.; Kim, B.-S.; Han, J. W.; Lee, H. ACS Catal. 2019, 9 10093.
[34]
Wu, J.; Wang, X.; Zheng, W.; Sun, Y.; Xie, Y.; Ma, K.; Zhang, Z.; Liao, Q.; Tian, Z.; Kang, Z.; Zhang, Y. J. Am. Chem. Soc. 2022, 144 19163.
[35]
Sun, Y.; Wu, J.; Xie, Y.; Wang, X.; Ma, K.; Tian, Z.; Zhang, Z.; Liao, Q.; Zheng, W.; Kang, Z.; Zhang, Y. Adv. Funct. Mater. 2022, 32 2207116.
[36]
Tyagi, A.; Penke, Y. K.; Sinha, P.; Malik, I.; Kar, K. K.; Ramkumar, J.; Yokoi, H. Int. J. Hydrogen Energy 2021, 46 22434.
[37]
Xu, W.; Apodaca, N.; Wang, H.; Yan, L.; Chen, G.; Zhou, M.; Ding, D.; Choudhury, P.; Luo, H. ACS Catal. 2019, 9 5074.
[38]
Shi, Y.; Liu, T.; Zhao, Y.; Su, J.; Zeb, S.; Nie, Y.; Qin, C.; Wang, B.; Jiang, X. Sens. Actuators B: Chem. 2022, 350 130860.
[39]
Ho, J.; Li, Y.; Dai, Y.; Kim, T.; Wang, J.; Ren, J.; Yun, H.; Liu, X. Int. J. Hydrogen Energy 2021, 46 20503.
[40]
Hu, Z.; Zhou, X.; Lu, Y.; Jv, R.; Liu, Y.; Li, N.; Chen, S. Electrochim. Acta 2019, 296 214.
[41]
Zou, J.; Chen, B.; Li, B.; Yin, M.; Miao, H.; Wang, F.; Zhang, C.; Zhang, H.; Yuan, J. Int. J. Hydrogen Energy 2022, 47 27470.
Outlines

/