Construction of Coal-based Carbon Materials with Rich Defect and Local Graphitic Domain Structures and Their Potassium Storage Properties
Received date: 2024-08-26
Online published: 2024-09-30
Supported by
National Natural Science Foundation of China(22209204); National Natural Science Foundation of China(22279162); Natural Science Foundation of Jiangsu Province(BK20221140); China Postdoctoral Science Foundation(2024M753514)
Potassium-ion hybrid capacitors (PIHCs), as a new type of electrochemical energy storage device, have become one of the candidates for large-scale energy storage technology due to their low cost and abundant resources. Carbon-based materials exhibit excellent conductivity, chemical stability, abundant availability, and low cost, making them become the most promising anode materials used for PIHCs. Notably, introducting local nanographitic domains into heteroatom-doped and defect-rich carbon-based materials is expected to provide sufficient reactive sites and structural stability, together with maintaining good electrical conductivity and ion diffusion rate. However, the larger radius of potassium ions leads to slow migration rates, and the repeated intercalation and deintercalation processes easily cause structural collapse of the active material, which limits the application of the devices. In this regard, developing low-cost carbon materials to achieve rapid ion diffusion and good cyclic stability has become an important challenge for the current development of PIHCs. Herein, the N/P co-doped coal-based carbon materials with local graphitic domain structure were prepared with a high-temperature catalytic confinement strategy by using cheap coal pitch as the carbon precursor, and their potassium storage properties and reaction kinetics were investigated. The study shows that N/P dual doping introduced abundant defects, which provide a large number of edge-active sites for the adsorption/desorption of K+. Meanwhile, the catalytically grown nanoscale graphitic domains facilitate rapid electron and ion transport. Thanks to the synergistic effect of the localized graphitic domains, rich active nitrogen, and defect network structure in the coal-based carbon material, the optimized NPC-800 anode exhibits excellent potassium storage capability (a specific capacity of 196.3 mAh•g−1 at current density of 2 A•g−1) and cycling stability (1000 cycles). In addition, the assembled PIHCs (AC//NPC-800) with commercial activated carbon (AC) cathode and the NPC-800 anode achieves a high energy density of 101.4 Wh•kg−1 and long cycling stability (1000 cycles), demonstrating its promising application prospects. Given the abundance and low cost of coal tar pitch and potassium resources, this work provides a feasible strategy for the application of low-cost coal-based carbon materials in secondary batteries and electrochemical capacitors.
Zhicheng Ju , Qilin Feng , Ye Jiang , Yaxin Chen , Quanchao Zhuang , Zheng Xing , Jiangmin Jiang . Construction of Coal-based Carbon Materials with Rich Defect and Local Graphitic Domain Structures and Their Potassium Storage Properties[J]. Acta Chimica Sinica, 2024 , 82(11) : 1124 -1133 . DOI: 10.6023/A24080253
[1] | Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. |
[2] | Wang, C.; Liu, T.; Yang, X.; Ge, S.; Stanley, N. V.; Rountree, E. S.; Leng, Y.; McCarthy, B. D. Nature 2022, 611, 485. |
[3] | Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M.; Wu, T.; Wang, J.; Wang, R.; Feng, J.; Chen, T. Nat. Mater. 2020, 19, 552. |
[4] | Yuan, Z.; Zhang, H.; Hu, S.; Zhang, B.; Zhang, J.; Cui, G. Acta Chim. Sinica 2023, 81, 1064 (in Chinese). |
[4] | (苑志祥, 张浩, 胡思伽, 张波涛, 张建军, 崔光磊, 化学学报, 2023, 81, 1064.). |
[5] | Zhang, W.; Liu, Y.; Guo, Z. Sci. Adv. 2019, 5, eaav7412. |
[6] | Chang, Z.; Qiao, Y.; Yang, H.; Deng, H.; Zhu, X.; He, P.; Zhou, H. Acta Chim. Sinica 2021, 79, 139 (in Chinese). |
[6] | (常智, 乔羽, 杨慧军, 邓瀚, 朱星宇, 何平, 周豪慎, 化学学报, 2021, 79, 139.) |
[7] | Ye, J.; Simon, P.; Zhu, Y. Natl. Sci. Rev. 2020, 7, 191. |
[8] | Liu, S.; Kang, L.; Henzie, J.; Zhang, J.; Ha, J.; Amin, M. A.; Hossain, M. S. A.; Jun, S. C.; Yamauchi, Y. ACS Nano 2021, 15, 18931. |
[9] | Wang, B.; Zhang, Z.; Yuan, F.; Zhang, D.; Wang, Q.; Li, W.; Li, Z.; Wu, Y. A.; Wang, W. Chem. Eng. J. 2022, 428, 131093. |
[10] | Han, X.; Chen, T.; Zhang, P.; Qi, Y.; Yang, P.; Zhao, Y.; Shao, M.; Wu, J.; Weng, J.; Li, S. Adv. Funct. Mater. 2022, 32, 2109672. |
[11] | Liu, S.; Kang, L.; Zhang, J.; Jun, S. C.; Yamauchi, Y. ACS Energy Lett. 2021, 6, 4127. |
[12] | Chen, J.; Yang, B.; Liu, B.; Lang, J.; Yan, X. Curr. Opin. Electrochem. 2019, 18, 1. |
[13] | Divya, M. L.; Lee, Y.; Aravindan, V. ACS Energy Lett. 2021, 6, 4228. |
[14] | Jiang, J.; Zheng, X.; Meng, Y.; He, W.; Chen, Y.; Zhuang, Q.; Yuan, J.; Ju, Z.; Zhang, X. Acta Chim. Sinica 2023, 81, 319 (in Chinese). |
[14] | (蒋江民, 郑欣冉, 孟雅婷, 贺文杰, 陈亚鑫, 庄全超, 袁加仁, 鞠治成, 张校刚, 化学学报, 2023, 81, 319.) |
[15] | Chen, Z.; Shen, Q.; Xiong, J.; Jiang, J.; Ju, Z.; Zhang, X. Batteries Supercaps 2023, 6, e202300224. |
[16] | Jiang, J.; Nie, G.; Nie, P.; Li, Z.; Pan, Z.; Kou, Z.; Dou, H.; Zhang, X.; Wang, J. Nano-Micro Lett. 2020, 12, 1. |
[17] | Han, G.; Jia, J.; Liu, Q.; Huang, G.; Xing, B.; Zhang, C.; Cao, Y. Carbon 2022, 186, 380. |
[18] | Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Tian, J.; Lin, N.; Qian, Y. Energy Storage Mater. 2020, 29, 341. |
[19] | Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. Adv. Energy Mater. 2020, 10, 1904199. |
[20] | Eftekhari, A.; Jian, Z.; Ji, X. ACS Appl. Mater. Interfaces 2017, 9, 4404. |
[21] | Yang, L.; Zhao, Y.; Zhang, Y.; Zhu, C.; Wang, W.; Shi, J.; Liu, S.; Chen, J.; Huang, M.; Wu, J. Small Methods 2023, 2301355. |
[22] | Li, J.; Hu, X.; Zhong, G.; Liu, Y.; Ji, Y.; Chen, J.; Wen, Z. Nano-Micro Lett. 2021, 13, 1. |
[23] | Zhang, W.; Ming, J.; Zhao, W.; Dong, X.; Hedhili, M. N.; Costa, P. M.; Alshareef, H. N. Adv. Funct. Mater. 2019, 29, 1903641. |
[24] | Huang, S.; Li, Z.; Wang, B.; Zhang, J.; Peng, Z.; Qi, R.; Wang, J.; Zhao, Y. Adv. Funct. Mater. 2018, 28, 1706294. |
[25] | Gan, Q.; Qin, N.; Gu, S.; Wang, Z.; Li, Z.; Liao, K.; Zhang, K.; Lu, L.; Xu, Z.; Lu, Z. Small Methods 2021, 5, 2100580. |
[26] | Wang, M.; Zhu, Y.; Zhang, Y.; Yang, T.; Duan, J.; Wang, C. Electrochim. Acta 2021, 368, 137649. |
[27] | Xu, J.; Fan, C.; Ou, M.; Sun, S.; Xu, Y.; Liu, Y.; Wang, X.; Li, Q.; Fang, C.; Han, J. Chem. Mater. 2022, 34, 4202. |
[28] | Chu, J.; Zhang, C.; Wu, X.; Xing, L.; Zhang, J.; Zhang, L.; Wang, H.; Wang, W.; Yu, Q. Small 2023, 19, 2304406. |
[29] | Zhang, Y.; Tao, L.; Xie, C.; Wang, D.; Zou, Y.; Chen, R.; Wang, Y.; Jia, C.; Wang, S. Adv. Mater. 2020, 32, 1905923. |
[30] | Guo, M.; Guo, J.; Jia, D.; Zhao, H.; Sun, Z.; Song, X.; Li, Y. J. Mater. Chem. A 2015, 3, 21178. |
[31] | Wanjun, T.; Donghua, C. Chem. Pap. 2007, 61, 329. |
[32] | Li, G.; Yin, Z.; Guo, H.; Wang, Z.; Yan, G.; Yang, Z.; Liu, Y.; Ji, X.; Wang, J. Adv. Energy Mater. 2019, 9, 1802878. |
[33] | Jiang, J.; Chen, Z.; Chen, Y.; Zhuang, Q.; Ju, Z.; Zhang, X. Adv. Funct. Mater. 2024, 2402416. |
[34] | Wang, J.; Yan, X.; Zhang, Z.; Ying, H.; Guo, R.; Yang, W.; Han, W. Q. Adv. Funct. Mater. 2019, 29, 1904819. |
[35] | Ahmad, N.; Muhammad, N.; Chen, H.; Wang, J.; Wei, C.; Khan, M.; Yang, R. J. Colloid Interface Sci. 2023, 650, 1725. |
[36] | Zhang, X.; Dong, X.; Qiu, X.; Cao, Y.; Wang, C.; Wang, Y.; Xia, Y. J. Power Sources 2020, 476, 228550. |
[37] | Li, Q.; Zhang, Y.; Chen, Z.; Zhang, J.; Tao, Y.; Yang, Q. H. Adv. Energy Mater. 2022, 12, 2201574. |
[38] | Qin, D.; Liu, Z.; Zhao, Y.; Xu, G.; Zhang, F.; Zhang, X. Carbon 2018, 130, 664. |
[39] | Liu, H.; Su, S.; Wang, H.; Wang, M.; Zhang, S.; Chang, B.; Yang, B. Nanoscale Adv. 2022, 4, 1394. |
[40] | Geng, C.; Chen, Y.; Shi, L.; Sun, Z.; Zhang, L.; Xiao, A.; Jiang, J.; Zhuang, Q.; Ju, Z. New Carbon Materials 2022, 37, 461 (in Chinese). |
[40] | (耿超, 陈亚鑫, 石利泺, 孙宗富, 张蕾, 肖安永, 蒋江民, 庄全超, 鞠治成, 新型炭材料, 2022, 37, 461.) |
[41] | Tao, S.; Xu, W.; Zheng, J.; Kong, F.; Cui, P.; Wu, D.; Qian, B.; Chen, S.; Song, L. Carbon 2021, 178, 233. |
[42] | Guo, W.; Geng, C.; Sun, Z.; Jiang, J.; Ju, Z. J. Colloid Interface Sci. 2022, 623, 1075. |
[43] | Wei, S.; Deng, X.; Li, W.; Liu, K.; Wang, J.; Zhao, H.; Wang, X. Chem. Eng. J. 2023, 455, 140540. |
[44] | Song, W.; Tang, Y.; Liu, J.; Xiao, S.; Zhang, Y.; Gao, Y.; Yang, C.; Liu, L. J. Alloy. Compd. 2023, 946, 169384. |
[45] | Jiang, J.; Nie, P.; Ding, B.; Zhang, Y.; Xu, G.; Wu, L.; Dou, H.; Zhang, X. J. Mater. Chem. A 2017, 5, 23283. |
[46] | Lu, W.; Xie, B. B.; Yang, C.; Tian, C.; Yan, L.; Ning, J.; Li, S.; Zhong, Y.; Hu, Y. Small 2023, 19, 2302629. |
[47] | Dong, R.; Wu, F.; Bai, Y.; Wu, C. Acta Chim. Sinica 2021, 79, 1461 (in Chinese). |
[47] | (董瑞琪, 吴锋, 白莹, 吴川, 化学学报, 2021, 79, 1461.) |
[48] | Li, S.; Deng, H.; Chu, Z.; Wang, T.; Wang, L.; Zhang, Q.; Cao, J.; Cheng, Y.; Huang, Y.; Zhu, J. ACS Appl. Mater. Interfaces 2021, 13, 50005. |
[49] | Deng, H.; Wang, L.; Li, S.; Zhang, M.; Wang, T.; Zhou, J.; Chen, M.; Chen, S.; Cao, J.; Zhang, Q. Adv. Funct. Mater. 2021, 31, 2107246. |
[50] | Yan, S.; Wang, Q.; Luo, S.; Zhang, Y.; Liu, X.; Liu, Y.; Wang, Z.; Hao, A.; Yi, T. J. Power Sources 2020, 461, 228151. |
[51] | Song, Z.; Di, M.; Chen, S.; Bai, Y. Chem. Eng. J. 2023, 470, 144237. |
[52] | Pan, Z.; Qian, Y.; Li, Y.; Xie, X.; Lin, N.; Qian, Y. Nano-Micro Lett. 2023, 15, 151. |
[53] | Gao, Z.; Tao, S.; Zhu, L.; Chen, T.; Min, H.; Shen, X.; Yang, H.; Chen, H.; Wang, J. J. Colloid Interface Sci. 2023, 649, 203. |
[54] | Wang, N.; Zhang, G.; Guan, T.; Wu, J.; Wang, J.; Li, K. ACS Appl. Mater. Interfaces 2022, 14, 13250. |
[55] | Xie, F.; Xu, Z.; Jensen, A. C.; Au, H.; Lu, Y.; Araullo‐Peters, V.; Drew, A. J.; Hu, Y. S.; Titirici, M. M. Adv. Funct. Mater. 2019, 29, 1901072. |
/
〈 |
|
〉 |