Review

Advances in Optical Regulation of the CRISPR/Cas9 System

  • Yuwen Xue ,
  • Lei Li ,
  • Meixing Li ,
  • Qingming Shen
Expand
  • a State Key Laboratory of Organic Electronics and Information Displays, School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023
    b State Key Laboratory of Organic Electronics and Information Displays, College of Materials Science & Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023

Received date: 2024-06-12

  Online published: 2024-10-09

Supported by

Natural Science Foundation of Jiangsu Province(BK20221326); Natural Science Foundation of Jiangsu Higher Education Institutions(20KJA430012); Qing Lan Project of Jiangsu Province

Abstract

CRISPR/Cas9 gene editing system consists of clustered regularly interspaced short palindromic repeats (CRISPR) sequences and CRISPR-associated protein 9 (Cas9), characterized by its simple structure, easy modification, and strong gene editing ability. It has great potential for application in genome editing, transcriptional perturbation, epigenetic regulation, and other fields. Despite its significant advantages in gene editing, the CRISPR/Cas9 system fails to achieve precise spatial and temporal control over the editing process and its cell and tissue-specific recognition capability requires improvement. The potential off-target phenomenon of genotoxicity will be further aggravated with increased Cas9 activity, greatly limiting its application in complex biological systems. Therefore, developing gene editing systems capable of precisely controlling the expression of multiple endogenous genes has become a hot topic of current CRISPR/Cas9 research. Light, as a non-invasive medium with high spatiotemporal resolution, is easy to regulate in terms of duration, location, wavelength, and intensity. Optical regulation, as a novel spatiotemporal regulation strategy of CRISPR/Cas9, has attracted much attention due to its characteristics of minimal toxic side effects, high spatiotemporal resolution, and real-time controllability. Optical regulation strategies can also be used in conjunction with imaging technologies such as fluorescence imaging and photoacoustic imaging to track the delivery process, greatly reducing the difficulty and safety risks of gene editing in vivo, thereby achieving visual delivery and precise spatiotemporal control of CRISPR systems. This review aims to summarize various optical modulation strategies employed in CRISPR/Cas9 system in recent years, evaluating the advantages and disadvantages of these strategies, and provide an outlook on the challenges and prospects of optical modulation in the CRISPR/Cas9 system.

Cite this article

Yuwen Xue , Lei Li , Meixing Li , Qingming Shen . Advances in Optical Regulation of the CRISPR/Cas9 System[J]. Acta Chimica Sinica, 2024 , 82(11) : 1180 -1192 . DOI: 10.6023/A24060192

References

[1]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. Science 2012, 337, 816.
[2]
Cong, L.; Ran, F. A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X.; Jiang, W.; Marraffini, L. A.; Zhang, F. Science 2013, 339, 819.
[3]
Knott, G. J.; Doudna, J. A. Science 2018, 361, 866.
[4]
Gallagher, D. N.; Haber, J. E. ACS Chem. Biol. 2018, 13, 397.
[5]
Richardson, C. D.; Ray, G. J.; DeWitt, M. A.; Curie, G. L.; Corn, J. E. Nat. Biotechnol. 2016, 34, 339.
[6]
Fu, F.; Xiong, W.; Xu, X.; Liu, Y.; Li, M.; Qi, Q.; Liu, X.; Zhang, Y.; Tian, T.; Zhou, X. Chin. J. Chem. 2024, 42, 2305.
[7]
Jiang, F.; Doudna, J. A. Annu. Rev. Biophys. 2017, 46, 505.
[8]
Urnov, F. D. CRISPR J. 2018, 1, 34.
[9]
Qiao, Y.; Zhang, Q.; Chen, D.; Liu, M.; Liu, W. Chin. J. Org. Chem. 2021, 41, 4279 (in Chinese).
[9]
(乔怡, 张庆林, 陈单丹, 刘美娜, 刘文, 有机化学, 2021, 41, 4279.)
[10]
Hu, J. H.; Davis, K. M.; Liu, D. R. Cell Chem. Biol. 2016, 23, 57.
[11]
Wan, T.; Pan, Q.; Liu, C.; Guo, J.; Li, B.; Yan, X.; Cheng, Y.; Ping, Y. Nano Lett. 2021, 21, 9761.
[12]
Li, B.; Niu, Y.; Ji, W.; Dong, Y. Trends Pharmacol. Sci. 2020, 41, 55.
[13]
Bhardwaj, S.; Kesari, K. K.; Rachamalla, M.; Mani, S.; Ashraf, G. M.; Jha, S. K.; Kumar, P.; Ambasta, R. K.; Dureja, H.; Devkota, H. P.; Gupta, G.; Chellappan, D. K.; Singh, S. K.; Dua, K.; Ruokolainen, J.; Kamal, M. A.; Ojha, S.; Jha, N. K. J. Adv. Res. 2021, 40, 207.
[14]
Vakulskas, C. A.; Behlke, M. A. Nucleic Acid Ther. 2019, 29, 167.
[15]
Maji, B.; Gangopadhyay, S. A.; Lee, M.; Shi, M.; Wu, P.; Heler, R.; Mok, B.; Lim, D.; Siriwardena, S. U.; Paul, B.; Dan?ík, V.; Vetere, A.; Mesleh, M. F.; Marraffini, L. A.; Liu, D. R.; Clemons, P. A.; Wagner, B. K.; Choudhary, A. Cell 2019, 177, 1067.
[16]
Zhuo, C.; Zhang, J.; Lee, J. H.; Jiao, J.; Cheng, D.; Liu, L.; Kim, H.-W.; Tao, Y.; Li, M. Signal Transduct. Target. Ther. 2021, 6, 238.
[17]
Xu, W.; Wang, D.; Tang, B. Z. Angew. Chem. Int. Ed. 2021, 60, 7476.
[18]
He, S.; Song, J.; Qu, J.; Cheng, Z. Chem. Soc. Rev. 2018, 47, 4258.
[19]
Dolmans, D. E.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer. 2003, 3, 380.
[20]
Hemphill, J.; Borchardt, E. K.; Brown, K.; Asokan, A.; Deiters, A. J. Am. Chem. Soc. 2015, 137, 5642.
[21]
Nguyen, N. T.; He, L.; Martinez-Moczygemba, M.; Huang, Y.; Zhou, Y. ACS Synth. Biol. 2018, 7, 814.
[22]
Jain, P. K.; Ramanan, V.; Schepers, A. G.; Dalvie, N. S.; Panda, A.; Fleming, H. E.; Bhatia, S. N. Angew. Chem. Int. Ed. 2016, 55, 12440.
[23]
Li, L.; Yang, Z.; Zhu, S.; He, L.; Fan, W.; Tang, W.; Zou, J.; Shen, Z.; Zhang, M.; Tang, L.; Dai, Y.; Niu, G.; Hu, S.; Chen, X. Adv. Mater. 2019, 31, e1901187.
[24]
Nishimasu, H.; Ran, F. A.; Hsu, P. D.; Konermann, S.; Shehata, S. I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Cell 2014, 156, 935.
[25]
Chen, Y.; Yan, X.; Ping, Y. ACS Mater. Lett. 2020, 2, 644.
[26]
Davis, K. M.; Pattanayak, V.; Thompson, D. B.; Zuris, J. A.; Liu, D. R. Nat. Chem. Biol. 2015, 11, 316.
[27]
Shin, J.; Jiang, F.; Liu, J.; Bray, N. L.; Rauch, B. J.; Baik, S. H.; Nogales, E.; Bondy-Denomy, J.; Corn, J. E.; Doudna, J. A. Sci. Adv. 2017, 12, e1701620.
[28]
Shen, W.; Xiong, W.; Qi, Q.; Liu, X.; Xie, Z.; Zhang, Y.; Hou, J.; Tian, T.; Zhou, X. Chin. J. Chem. 2024, 42, 1387.
[29]
Zhang, Y.; Zhang, Y.; Han, L.; Che, Q.; Tan, J.; Zou, P.; Chen, Y. Chin. J. Chem. 2023, 41, 3639.
[30]
Zhang, Y.; Wang, Q.; Wang, J.; Tang, X. ChemPlusChem 2021, 86, 587.
[31]
Zhang, Y.; Ling, X.; Su, X.; Zhang, S.; Wang, J.; Zhang, P.; Feng, W.; Zhu, Y. Y.; Liu, T.; Tang, X. Angew. Chem. Int. Ed. 2020, 59, 20895.
[32]
Wang, S.; Wei, L.; Wang, J.-Q.; Ji, H.; Xiong, W.; Liu, J.; Yin, P.; Tian, T.; Zhou, X. ACS Chem. Biol. 2020, 15, 1455.
[33]
Zou, R. S.; Liu, Y.; Wu, B.; Ha, T. Mol. Cell 2021, 81, 1553.
[34]
Sun, Y.-J.; Chen, W.-D.; Liu, J.; Li, J.-J.; Zhang, Y.; Cai, W.-Q.; Liu, L.; Tang, X.-J.; Hou, J.; Wang, M.; Cheng, L. Angew. Chem. Int. Ed. 2023, 62, e202212413.
[35]
Deng, H.; Xu, H.; Wang, Y.; Jia, R.; Ma, X.; Feng, Y.; Chen, H. Nucleic Acids Res. 2023, 51, 4064.
[36]
Tang, Y.; Pei, F.; Lu, X.; Fan, Q.; Huang, W. Adv. Opt. Mater. 2019, 7, 1900917.
[37]
Miao, Y.; Gu, C.; Zhu, Y.; Yu, B.; Shen, Y.; Cong, H. ChemBioChem 2018, 19, 2522.
[38]
Hasanzadeh, A.; Noori, H.; Jahandideh, A.; Haeri Moghaddam, N.; Kamrani Mousavi, S. M.; Nourizadeh, H.; Saeedi, S.; Karimi, M.; Hamblin, M. R. ACS Appl. Bio Mater. 2022, 5, 413.
[39]
Jackson, C. T.; Jeong, S.; Dorlhiac, G. F.; Landry, M. P. iScience 2021, 24, 102156.
[40]
Fang, T.; Cao, X.; Ibnat, M.; Chen, G. J. Nanobiotechnology 2022, 20, 354.
[41]
Chen, J.; Fan, T.; Xie, Z.; Zeng, Q.; Xue, P.; Zheng, T.; Chen, Y.; Luo, X.; Zhang, H. Biomaterials 2020, 237, 119827.
[42]
Lyu, Y.; He, S.; Li, J.; Jiang, Y.; Sun, H.; Miao, Y.; Pu, K. Angew. Chem. Int. Ed. 2019, 58, 18197.
[43]
Deng, S.; Li, X.; Liu, S.; Chen, J.; Li, M.; Chew, S. Y.; Leong, K. W.; Cheng, D. Sci. Adv. 2020, 6, eabb4005.
[44]
Yang, C.; Fu, Y.; Huang, C.; Hu, D.; Zhou, K.; Hao, Y.; Chu, B.; Yang, Y.; Qian, Z. Biomaterials 2020, 255, 120194.
[45]
Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Chem. Rev. 2014, 114, 5161.
[46]
Dong, H.; Du, S.-R.; Zheng, X.-Y.; Lyu, G.-M.; Sun, L.-D.; Li, L.-D.; Zhang, P.-Z.; Zhang, C.; Yan, C.-H. Chem. Rev. 2015, 115, 10725.
[47]
Huang, J.; Li, Z.; Liu, Z. Acta Chim. Sinica 2021, 79, 1049 (in Chinese).
[47]
(黄菊, 李贞, 刘志洪, 化学学报, 2021, 79, 1049.)
[48]
Pan, Y.; Yang, J.; Luan, X.; Liu, X.; Li, X.; Yang, J.; Huang, T.; Sun, L.; Wang, Y.; Lin, Y.; Song, Y. Sci. Adv. 2019, 5, eaav7199.
[49]
Wang, D.; Chen, L.; Li, C.; Long, Q.; Yang, Q.; Huang, A.; Tang, H. J. Nanobiotechnology 2022, 20, 27.
[50]
Devarajan, A. ACS Synth. Biol. 2024, 13, 25.
[51]
Nihongaki, Y.; Kawano, F.; Nakajima, T.; Sato, M. Nat. Biotechnol. 2015, 33, 755.
[52]
Nihongaki, Y.; Yamamoto, S.; Kawano, F. Chem. Biol. 2015, 22, 169.
[53]
Zhou, X. X.; Zou, X.; Chung, H. K.; Gao, Y.; Liu, Y.; Qi, L. S.; Lin, M. Z. ACS Chem. Biol. 2018, 13, 443.
[54]
Zhou, X. X.; Fan, L. Z.; Li, P.; Shen, K.; Lin, M. Z. Science 2017, 355, 836.
[55]
Marino, N. D.; Pinilla Redondo, R.; Cs?rg?, B.; Bondy Denomy, J. Nat. Methods 2020, 17, 471.
[56]
Kim, I.; Jeong, M.; Ka, D.; Han, M.; Kim, N.-K.; Bae, E.; Suh, J.-Y. Sci. Rep. 2018, 8, 3883.
[57]
Zhu, Y.; Gao, A.; Zhan, Q.; Wang, Y.; Feng, H.; Liu, S.; Gao, G.; Serganov, A.; Gao, P. Mol. Cell 2019, 74, 296.
[58]
Harrington, L. B.; Doxzen, K. W.; Ma, E.; Liu, J. J.; Knott, G. J.; Edraki, A.; Garcia, B.; Amrani, N.; Chen, J. S.; Cofsky, J. C.; Kranzusch, P. J.; Sontheimer, E. J.; Davidson, A. R.; Maxwell, K. L.; Doudna, J. A. Cell 2017, 170, 1224.
[59]
Knott, G. J.; Thornton, B. W.; Lobba, M. J.; Liu, J. J.; Al Shayeb, B.; Watters, K. E.; Doudna, J. A. Nat. Struct. Mol. Biol. 2019, 26, 315.
[60]
León, L. M.; Park, A. E.; Borges, A. L.; Zhang, J. Y.; Bondy- Denomy, J. Nucleic Acids Res. 2021, 49, 2114.
[61]
Bubeck, F.; Hoffmann, M. D.; Harteveld, Z.; Aschenbrenner, S.; Bietz, A.; Waldhauer, M. C.; B?rner, K.; Fakhiri, J.; Schmelas, C.; Dietz, L.; Grimm, D.; Correia, B. E.; Eils, R.; Niopek, D. Nat. Methods 2018, 15, 924.
[62]
Chi, J.; Zhao, J.; Wei, S.; Li, Y.; Zhi, J.; Wang, H.; Hou, X.; Hu, L.; Zheng, X.; Gao, M. ACS Appl. Mater. Interfaces 2021, 13, 6043.
[63]
Yu, Y.; Wu, X.; Guan, N.; Shao, J.; Li, H.; Chen, Y.; Ping, Y.; Li, D.; Ye, H. Sci. Adv. 2020, 6, eabb1777.
[64]
Xu, H.; Han, P.; Qin, A.; Tang, B. Z. Acta Chim. Sinica 2023, 81, 1420 (in Chinese).
[64]
(徐赫, 韩鹏博, 秦安军, 唐本忠, 化学学报, 2023, 81, 1420.)
[65]
Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Chem. Soc. Rev. 2018, 47, 2280.
[66]
Zhang, L.; Forgham, H.; Huang, X.; Shen, A.; Davis, T. P.; Qiao, R.; Guo, B. Mater. Today Adv. 2022, 14, 100226.
[67]
Yu, Z.; Chan, W. K.; Zhang, Y.; Tan, T. T. Y. Biomaterials 2021, 269, 120459.
[68]
Wang, P.; Zhang, L.; Zheng, W.; Cong, L.; Guo, Z.; Xie, Y.; Wang, L.; Tang, R.; Feng, Q.; Hamada, Y.; Gonda, K.; Hu, Z.; Wu, X.; Jiang, X. Angew. Chem. Int. Ed. 2018, 57, 1491.
[69]
Yin, H.; Zhou, B.; Dong, C.; Zhang, Y.; Yu, J.; Pu, Y.; Feng, W.; Sun, L.; Hu, H.; Chen, Y.; Xu, H. Adv. Funct. Mater. 2021, 31, 2107093.
[70]
Zhang, L.; Hou, Y.; Li, N.; Wu, K.; Zhai, J. J. Cancer Res. Clin. Oncol. 2010, 136, 1497.
[71]
Tao, W.; Cheng, X.; Sun, D.; Guo, Y.; Wang, N.; Ruan, J.; Hu, Y.; Zhao, M.; Zhao, T.; Feng, H.; Fan, L.; Lu, C.; Ma, Y.; Duan, J.; Zhao, M. Biomaterials 2022, 287, 121621.
[72]
Costa, T. E. M. M.; Raghavendra, N. M.; Penido, C. Eur. J. Med. Chem. 2020, 189, 112063.
[73]
Chen, X.; Chen, Y.; Xin, H.; Wan, T.; Ping, Y. Proc. Natl. Acad. Sci. 2020, 117, 2395.
[74]
Tang, H.; Xu, X.; Chen, Y.; Xin, H.; Wan, T.; Li, B.; Pan, H.; Li, D.; Ping, Y. Adv. Mater. 2021, 33, 2006003.
[75]
Liu, Z.; Shi, M.; Ren, Y.; Xu, H.; Weng, S.; Ning, W.; Ge, X.; Liu, L.; Guo, C.; Duo, M.; Li, L.; Li, J.; Han, X. Mol. Cancer. 2023, 22, 35.
[76]
Lin, Y. Q.; Feng, K. K.; Lu, J. Y.; Le, J. Q.; Li, W. L.; Zhang, B. C.; Li, C. L.; Song, X. H.; Tong, L. W.; Shao, J. W. J. Controlled Release 2023, 361, 727.
[77]
Zheng, R.; Zhang, L.; Parvin, R.; Su, L.; Chi, J.; Shi, K.; Ye, F.; Huang, X. Adv. Sci. 2023, 10, 2300195.
[78]
Xie, R.; Wang, Y.; Gong, S. Biomater. Sci. 2021, 9, 6012.
[79]
Yin, H.; Sun, L.; Pu, Y.; Yu, J.; Feng, W.; Dong, C.; Zhou, B.; Du, D.; Zhang, Y.; Chen, Y.; Xu, H. ACS Cent. Sci. 2021, 7, 2049.
[80]
Singh, R.; Sharma, A.; Saji, J.; Umapathi, A.; Kumar, S.; Daima, H. K. Nano Converg. 2022, 9, 21.
[81]
Kashyap, B. K.; Singh, V. V.; Solanki, M. K.; Kumar, A.; Ruokolainen, J.; Kesari, K. K. ACS Omega 2023, 8, 14290.
[82]
Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.; Yu, T. Signal Transduct. Target. Ther. 2023, 8, 36.
Outlines

/