The Fabrication of Silver Nanoparticles Using Puerarin and the Photothermal Sterilization and Diabetic Wound Healing Behavior
Received date: 2024-08-25
Online published: 2024-10-22
Supported by
National Natural Science Foundation of China(22103007); National Natural Science Foundation of China(82274353); Key Research and Development Plan of Shaanxi Province(2024SF-YBXM-517); Key Research and Development Plan of Shaanxi Province(2024SF-YBXM-426); Science and Technology Youth Stars Project of Shaanxi Province(2023KJXX-063); Fundamental Research Funds for the Central Universities, CHD(300102124207); Science and Technology Innovation Talent System Construction Plan of Shaanxi University of Chinese medicine(2023-LJRC-03); Open Project of State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources(SUCM-QM202207)
The complexity of plant extract incurs the uncertainty of capping and reducing agents in the biosynthesis of silver nanoparticles (AgNPs) leading to a poor reproducibility, which dramatically limits the application of this method. To overcome this problem, the puerarin (Pue), which is an isoflavone derived from kudzu roots and has strong biological activities, is directly used as the reducing and capping agents to prepare bioactive AgNPs (Pue@AgNPs). The influence of biosynthesis parameters like pH (Pue solution), concentration of both Pue and AgNO3 and incubation time were assessed to obtain Pue@AgNPs with superior bactericidal activity and photothermal effect. The as-prepared AgNPs are nearly spherical mainly existing in the monodispersed form with a small amount of aggregation, covering by anions (-44.0 mV) and revealing a high degree of stability (at least 15 days). It is conceived that the aggregation of Pue@AgNPs is responsible for absorbing near-infrared light (808 nm). The X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) studies show that Pue@AgNPs has a face-centered cubic (fcc) structure. The Pue@AgNPs show potent photothermal effect and antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA) under 808 nm laser radiation. The minimum inhibition concentration (MIC) values for E. coli, S. aureus and MRSA are 50.0 μg•mL−1. The internalization of Pue@AgNPs displays a variant trend suggesting the different mechanism of cell death. For E. coli, cell wall and intracellular damage may be responsible for cell death. However, for S. aureus and MRSA, the cell death may be rooted in oxidative stress or intracellular penetration. The Pue@AgNPs also exhibits superior antioxidation activity in trapping 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical cation (ABTS•+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and could accelerate diabetic wound contraction and healing within 21 days. The histological analysis showed that Pue@AgNPs could reduce inflammation and accelerate the formation of blood and collagen deposition.
Yinghui Wang , Yuhui Wang , Jiayao Xiong , Siqi Su , Mengke Hao , Simin Wei . The Fabrication of Silver Nanoparticles Using Puerarin and the Photothermal Sterilization and Diabetic Wound Healing Behavior[J]. Acta Chimica Sinica, 2024 , 82(11) : 1150 -1161 . DOI: 10.6023/A24080252
| [1] | Guo, X. R.; Yin, Y. G.; Tan, Z. Q.; Liu, J. F.; Jiang, G. B. Acta Chim. Sinica 2018, 76, 387 (in Chinese). |
| [1] | (郭肖茹, 阴永光, 谭志强, 刘景富, 江桂斌, 化学学报, 2018, 76, 387.) |
| [2] | Chatterjee, S.; Lou, X. Y.; Liang, F.; Yang, Y. W. Coordin. Chem. Rev. 2022, 459, 214461. |
| [3] | Beck, F.; Loessl, M.; Baeumner, A. J. Microchim. Acta 2023, 190, 91. |
| [4] | Peng, H. C.; Chen, S.; Yan, B. Acta Chim. Sinica 2024, 82, 797 (in Chinese). |
| [4] | (彭红超, 陈胜, 阎斌, 化学学报, 2024, 82, 797.) |
| [5] | Loza, K.; Heggen, M.; Epple, M. Adv. Funct. Mater. 2020, 30, 1909260. |
| [6] | Oun, A. A.; Shankar, S.; Rhim, J. W. Crit. Rev. Food Sci. 2020, 60, 435. |
| [7] | Nguyen, N. T. T.; Nguyen, L. M.; Nguyen, T. T. T.; Liew, R. K.; Nguyen, D. T. C.; Tran, T. V. Sci. Total Environ. 2022, 827, 154160. |
| [8] | Wang, C.; Hong, T. T.; Cui, P. F.; Wang, J. H.; Xia, J. Adv. Drug Deliver. Rev. 2021, 175, 113818. |
| [9] | Xu, L.; Wang, Y. Y.; Huang, J.; Chen, C. Y.; Wang, Z. X.; Xie, H. Theranostics 2020, 10, 8996. |
| [10] | Mat'atková, O.; Michailidu, J.; Miskovská, A.; Kolouchová, I.; Masák, J.; Cejková, A. Biotechnol. Adv. 2022, 58, 107905. |
| [11] | Nie, P. H.; Zhao, Y.; Xu, H. Y. Ecotox. Environ. Safe. 2023, 253, 114636. |
| [12] | Godoy-Gallardo, M.; Eckhard, U.; Delgado, L. M.; Puente, Y.; Hoyos-Nogués, M.; Gil, F. J.; Perez, R. A. Bioact. Mater. 2021, 6, 4470. |
| [13] | Li, J.; Zhang, W.; Ji, W. H.; Wang, J. Q.; Wang, N. X.; Wu, W. X.; Wu, Q.; Hou, X. Y.; Hu, W. B.; Li, L. J. Mater. Chem. B 2021, 9, 7909. |
| [14] | Chen, Y. T.; Zhuo, M. P.; Wen, X. Y.; Chen, W. B.; Zhang, K. Q.; Li, M. D. Adv. Sci. 2023, 10, 2206830. |
| [15] | Zhao, L. P.; Zhang, X.; Wang, X. X.; Guan, X. W.; Zhang, W. F.; Ma, J. L. J. Nanobiotechnol. 2021, 19, 335. |
| [16] | Xu, H.; Han, P. B.; Qin, A. J.; Tang, B. Z. Acta Chim. Sinica 2023, 81, 1420 (in Chinese). |
| [16] | (徐赫, 韩鹏博, 秦安, 唐本忠, 化学学报, 2023, 81, 1420.) |
| [17] | Sun, H. T.; Zhang, Q.; Li, J. C.; Peng, S. J.; Wang, X. L.; Cai, R. Nano Today 2021, 37, 101073. |
| [18] | Zheng, B. D.; He, Q. X.; Li, X. S.; Yoon, J.; Huang, J. D. Coordin. Chem. Rev. 2021, 426, 213548. |
| [19] | Maleki, A.; He, J. H.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. L. ACS Nano 2021, 15, 18895. |
| [20] | Hao, S. Y.; Han, H. C.; Yang, Z. Y.; Chen, M. T.; Jiang, Y. Y.; Lu, G. X.; Dong, L.; Wen, H. L.; Li, H.; Liu, J. R.; Wu, L. L.; Wang, Z.; Wang, F. L. Nano-Micro Lett. 2022, 14, 178. |
| [21] | Huo, J. J.; Jia, Q. Y.; Huang, H.; Zhang, J.; Li, P.; Dong, X. C.; Huang, W. Chem. Soc. Rev. 2021, 50, 8762. |
| [22] | Mustapha, T.; Misni, N.; Ithnin, N. R.; Daskum, A. M.; Unyah, N. Z. Int. J. Env. Res. Pub. Heal. 2022, 19, 674. |
| [23] | Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Environ. Chem. Lett. 2021, 19, 355. |
| [24] | Mikhailova, E. O. J. Funct. Biomater. 2020, 11, 84. |
| [25] | Alharbi, N. S.; Alsubhi, N. S.; Felimban, A. I. J. Radiat. Res. Appl. Sci. 2022, 15, 109. |
| [26] | Rahuman, H. B. H.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. IET Nanobiotechnol. 2022, 16, 115. |
| [27] | Moradi, F.; Sedaghat, S.; Moradi, O.; Salmanabadi, S. A. Inorg. Nano-Met. Chem. 2021, 51, 133. |
| [28] | Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P. R.; Nayak, B. J. Colloid Interf. Sci. 2015, 457, 329. |
| [29] | Zhang, Y. Q.; Cheng, X. F.; Zhang, Y. C.; Xue, X. H.; Fu, Y. Z. Colloid. Surface. A 2013, 423, 63. |
| [30] | Reddy, N. V.; Li, H. Z.; Hou, T. Y.; Bethu, M. S.; Ren, Z. Q.; Zhang, Z. J. Int. J. Nanomed. 2021, 16, 15. |
| [31] | He, Y.; Du, Z. Y.; Lv, H. B.; Jia, Q. F.; Tang, Z. K.; Zheng, X.; Zhang, K.; Zhao, F. H. Int. J. Nanomed. 2013, 8, 1809. |
| [32] | Rakib-Uz-Zaman, S. M.; Hoque Apu, E.; Muntasir, M. N.; Mowna, S. A.; Khanom, M. G.; Jahan, S. S.; Akter, N.; R. Khan, M. A.; Shuborna, N. S.; Shams, S. M.; Khan, K. Challenges 2022, 13, 18. |
| [33] | Anandan, M.; Poorani, G.; Boomi, P.; Varunkumar, K.; Anand, K.; Chuturgoon, A. A.; Saravanan, M.; Prabu, H. G. Process Biochem. 2019, 80, 80. |
| [34] | Wang, Y. H.; Wei, S. M.; Wang, K.; Wang, Z.; Duan, J. W.; Cui, L.; Zheng, H. Y.; Wang, Y.; Wang, S. S. RSC Adv. 2020, 10, 27173. |
| [35] | Wei, S.; Tang, Z.; Li, H.; Zhang, K.; Song, Z. Chin. Tradit. Herb. Drugs 2019, 50, 52 (in Chinese). |
| [35] | (魏思敏, 唐志书, 李慧敏, 张可可, 宋忠兴, 中草药, 2019, 50, 52.) |
| [36] | Wei, S. M.; Wang, Y. H.; Tang, Z. S.; Su, R.; Hu, J. H.; Guo, H.; Li, C.; Jiang, J. T.; Song, Z. X. Chem. J. Chin. Univ. 2020, 41, 1391 (in Chinese). |
| [36] | (魏思敏, 王英辉, 唐志书, 苏瑞, 胡锦航, 郭惠, 李琛, 蒋金涛, 宋忠兴, 高等学校化学学报, 2020, 41, 1391.) |
| [37] | Wang, Y. H.; Wei, S. M. ACS Omega 2022, 7, 1494. |
| [38] | Wei, S. M.; Wang, Y. H.; Tang, Z. S.; Hu, J. H.; Su, R.; Lin, J. J.; Zhou, T.; Guo, H.; Wang, N.; Xu, R. R. New J. Chem. 2020, 44, 9304. |
| [39] | Wei, S. M.; Wang, Y. H.; Tang, Z. S.; Xu, H. B.; Wang, Z.; Yang, T.; Zou, T. Y. RSC Adv. 2021, 11, 1411. |
| [40] | Wei, S.; Wang, Y.; Tang, Z.; Wang, Z.; Zhang, Z.; Su, R.; Jin, R.; Song, Z. Chin. Tradit. Herb. Drugs 2020, 51, 4169 (in Chinese). |
| [40] | (魏思敏, 王英辉, 唐志书, 王哲, 张珍, 苏瑞, 靳如意, 宋忠兴, 中草药, 2020, 51, 4169.) |
| [41] | Wang, Y.; Zou, T.; Su, R.; Wei, S. Chin. Tradit. Herb. Drugs 2022, 53, 1964 (in Chinese). |
| [41] | (王英辉, 邹太艳, 苏瑞, 魏思敏, 中草药, 2022, 53, 1964.) |
| [42] | Wei, S. M.; Hao, M. K.; Tang, Z. S.; Zhou, T.; Zhao, F.; Wang, Y. H. RSC Adv. 2022, 12, 36115. |
| [43] | Wei, D. W.; Sun, W. Y.; Qian, W. P.; Ye, Y. Z.; Ma, X. Y. Carbohyd. Res. 2009, 344, 2375. |
| [44] | De Matos, R. A.; Courrol, L. C. Amino Acids 2017, 49, 379. |
| [45] | Zeng, X. L.; Chen, B. H.; Wang, L. P.; Sun, Y. X.; Jin, Z.; Liu, X. Y.; Ouyang, L. P.; Liao, Y. Bioact. Mater. 2023, 19, 653. |
| [46] | Han, R. M.; Tian, Y. X.; Liu, Y.; Chen, C. H.; Ai, X. C.; Zhang, J. P.; Skibsted, L. H. J. Agric. Food Chem. 2009, 57, 3780. |
| [47] | Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. J. Funct. Biomater. 2023, 14, 244. |
| [48] | Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Nat. Rev. Clin. Oncol. 2020, 17, 657. |
| [49] | Kumari, M.; Shukla, S.; Pandey, S.; Giri, V. P.; Bhatia, A.; Tripathi, T.; Kakkar, P.; Nautiyal, C. S.; Mishra, A. ACS Appl. Mater. Interfaces 2017, 9, 4519. |
| [50] | Hao, M.; Wei, S.; Su, S.; Tang, Z.; Wang, Y. ACS Appl. Mater. Interfaces 2024, 16, 24221. |
/
| 〈 |
|
〉 |