In-situ Potential Characterization Reveals the Interface Degradation Mechanism of Solid-state Polymer Lithium Batteries
Received date: 2024-09-09
Online published: 2024-11-05
Supported by
Suzhou Science and Technology Program(SSD2023005)
Solid-state polymer electrolyte lithium metal batteries (SPE-LIBs) with high energy density and safety have been widely considered as the next generation of lithium batteries. In recent years, the ion transport mechanism of SPE has been extensively studied, resulting in a significant increase in its ionic conductivity and lithium transference number. However, SPE has poor cycling stability when used with high-voltage cathodes, limiting its further development. Therefore, it is important to understand the mechanism of battery performance degradation in high-voltage systems. In this work, first, the SPE was prepared by photopolymerization using 1-butyl-3-vinylimidazolium bis(trifluoromethylsulfonyl) imide, vinylethylene carbonate and poly(ethylene glycol) diacrylate. The LiFePO4(LFP)||SPE||Li battery was prepared by the in-situ polymerization method. This battery has an initial discharge specific capacity of 159.6 mAh•g-1 at room temperature, and the capacity retention rate reaches 95% after 145 cycles, indicating that the cell has a low interface impedance and the electrolyte has a high ionic conductivity. Then, in-situ Scanning Kelvin Probe Force Microscopy was used to characterize the interfacial potential of the cross-sections of batteries with two different cathodes, which were prepared by argon ion beam polishing, during charging. Compared with the LFP cathode, the LiNi0.6Co0.2Mn0.2O2 (NCM) cathode with higher electrochemical reaction potential has a greater potential difference between the cathode and the electrolyte after charging. As a result, it indicates that the energy level of high-voltage cathode materials changes greatly during the charging process, which makes the electrolyte materials more susceptible to losing electrons preferentially and cause degradation side reactions. Combined with electrochemical impedance spectroscopy and laser confocal Raman spectroscopy to characterize the interfacial structure of the SPE-LIB. It found that side reactions would destroy the structure of the cathode electrolyte interphase, resulting in a significant increase in the interfacial impedance and the attenuation of the battery capacity. The electrolyte degradation mechanism of SPE-LIBs under high-voltage systems was revealed through in-situ characterization, which provided guidance for improving the cycling stability with high-voltage cathodes.
Bowen Chen , Ke Xu , Qi Chen , Liwei Chen . In-situ Potential Characterization Reveals the Interface Degradation Mechanism of Solid-state Polymer Lithium Batteries[J]. Acta Chimica Sinica, 2024 , 82(12) : 1209 -1215 . DOI: 10.6023/A24090267
[1] | Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. |
[2] | Li, H. Joule 2019, 3, 911. |
[3] | Grey, C. P.; Hall, D. S. Nat. Commun. 2020, 11, 6279. |
[4] | Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. |
[5] | Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194. |
[6] | Tao, M. M.; Chen, J. N.; Lin, H. X.; Zhou, Y. A.; Zhao, D. H.; Shan, P. Z.; Jin, Y. T.; Yang, Y. J. Energy Chem. 2024, 96, 226. |
[7] | Wang, Q. Y.; Liu, B.; Shen, Y. H.; Wu, J. K.; Zhao, Z. Q.; Zhong, C.; Hu, W. B. Adv. Sci. 2021, 8, 2101111. |
[8] | Manthiram, A.; Yu, X. W.; Wang, S. F. Nat. Rev. Mater. 2017, 2, 16103. |
[9] | Kalnaus, S.; Dudney, N. J.; Westover, A. S.; Herbert, E.; Hackney, S. Science 2023, 381, 1300. |
[10] | Bocharova, V.; Sokolov, A. P. Macromolecules 2020, 53, 4141. |
[11] | Song, Z.; Chen, F.; Martinez-Iba?ez, M.; Feng, W.; Forsyth, M.; Zhou, Z.; Armand, M.; Zhang, H. Nat. Commun. 2023, 14, 4884. |
[12] | Tian, S. W.; Zhou, L. X.; Zhang, B. Q.; Zhang, J. J.; Du, X. F.; Zhang, H.; Hu, S. J.; Yuan, Z. X.; Han, P. X.; Li, S. L.; Zhao, W.; Zhou, X. H.; Cui, G. L. Acta Chim. Sinica 2022, 80, 1410. (in Chinese) |
[12] | (田宋炜, 周丽雪, 张秉乾, 张建军, 杜晓璠, 张浩, 胡思伽, 苑志祥, 韩鹏献, 李素丽, 赵伟, 周新红, 崔光磊, 化学学报, 2022, 80, 1410.) |
[13] | Atik, J.; Diddens, D.; Thienenkamp, J. H.; Brunklaus, G.; Winter, M.; Paillard, E. Angew. Chem.-Int. Ed. 2021, 60, 11919. |
[14] | Zou, Z.; Li, Y.; Lu, Z.; Wang, D.; Cui, Y.; Guo, B.; Li, Y.; Liang, X.; Feng, J.; Li, H.; Nan, C. W.; Armand, M.; Chen, L.; Xu, K.; Shi, S. Chem. Rev. 2020, 120, 4169. |
[15] | Wang, H.; Song, J.; Zhang, K.; Fang, Q.; Zuo, Y.; Yang, T.; Yang, Y.; Gao, C.; Wang, X.; Pang, Q.; Xia, D. Energy Environ. Sci. 2022, 15, 5149. |
[16] | Liu, J.; Yang, Z.; Liu, W.; Yang, Z.; Chen, S.; Li, R.; Huang, T.; Liu, H. Sci. Sin. Chim. 2023, 53, 1277. (in Chinese) |
[16] | (刘嘉星, 杨智昊, 刘维捷, 阳征斐, 陈苏越, 李若兰, 黄铁骑, 刘洪涛, 中国科学: 化学, 2023, 53, 1277.) |
[17] | Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem. Soc. Rev. 2017, 46, 797. |
[18] | Xue, G. Y.; Li, J.; Chen, J. C.; Chen, D. Q.; Hu, C. J.; Tang, L. F.; Chen, B. W.; Yi, R. W.; Shen, Y. B.; Chen, L. W. Acta Phys.-Chim. Sin. 2023, 39, 2205012. |
[19] | Caba?ero Martínez, M. A.; Boaretto, N.; Naylor, A. J.; Alcaide, F.; Salian, G. D.; Palombarini, F.; Ayerbe, E.; Borras, M.; Casas‐ Cabanas, M. Adv. Energy Mater. 2022, 12, 2201264. |
[20] | Gupta, H.; Singh, S. K.; Srivastava, N.; Meghnani, D.; Tiwari, R. K.; Mishra, R.; Patel, A.; Tiwari, A.; Saroj, A. L.; Singh, R. K. ACS Appl. Energ. Mater. 2021, 4, 13878. |
[21] | Liu, J. G.; Li, B. H.; Cao, J. H.; Xing, X.; Cui, G. J. Energy Chem. 2024, 91, 73. |
[22] | Vijayakumar, V.; Anothumakkool, B.; Kurungot, S.; Winter, M.; Nair, J. R. Energy Environ. Sci. 2021, 14, 2708. |
[23] | Liu, T. T.; Zhang, J. J.; Han, W.; Zhang, J. N.; Ding, G. L.; Dong, S. M.; Cui, G. L. J. Electrochem. Soc. 2020, 167, 070527. |
[24] | Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Surf. Sci. Rep. 2011, 66, 1. |
[25] | Chen, X.; Lai, J. Q.; Shen, Y. B.; Chen, Q.; Chen, L. W. Adv. Mater. 2018, 30, 1802490. |
[26] | Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. |
[27] | Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. |
[28] | Choi, W.; Shin, H. C.; Kim, J. M.; Choi, J. Y.; Yoon, W. S. J. Electrochem. Sci. Technol. 2020, 11, 1. |
/
〈 |
|
〉 |