Advances in Nucleic Acid Drug Delivery Systems for Liver Cancer Treatment
Received date: 2024-09-03
Online published: 2024-11-11
Supported by
Pearl River Talent Project(2021QN02Y225); Overseas Research Cooperation Fund of Shenzhen International Graduate School, Tsinghua University(HW2023009); Department of Chemical Engineering-iBHE Cooperation Joint Fund Project
Liver cancer has become a major threat to human health due to its high lethality, poor prognosis and strong drug resistance. With the in-depth researches on liver cancer and the development of nucleic acid biotechnology, nucleic acid drugs have gradually shown great potential in liver cancer treatment. Compared with traditional therapeutic drugs like chemical drugs, nucleic acid drugs have the characteristics of strong specificity, rich potential targets, relatively short development cycle, and negligible toxic side effects, etc. However, due to the poor stability of nucleic acid molecules, it is difficult to achieve long circulation time in body, high internalization activity, and lysosomal escape capacity in cell, which leads to the low transfection efficiency and prevents it from exerting the therapeutic effect. Therefore, it’s of great importance to develop drug delivery systems for nucleic acid drugs to improve the therapeutic effect and enhance the stability as well as the targeting of nucleic acid drugs in vivo. Currently, the delivery vectors for nucleic acid drugs include viral vectors and non-viral vectors. Viral vectors, including adenovirus, lentivirus, etc., have the advantages of high transfection efficiency and high specificity, but their application prospect is greatly restricted due to the safety and ethical issues. Non-viral vectors are safer, more stable and structurally tunable compared with viral vectors. Non-viral vectors, including covalently attached systems, inorganic nanoparticles, lipid nanoparticles (LNP), polymer nanoparticles (PNP), DNA nanoparticles etc., have high application prospects due to their rich types, diverse and adjustable structures, and good biocompatibility. In this paper, we systematically summarize the current nucleic acid drug delivery systems, especially for liver cancer, and carefully classify the application scenarios and characteristics of the current delivery systems and introduce all the delivery systems as exhaustively as possible. It provides reference for the research and development of innovative nucleic acid drug delivery systems tailored for liver cancer. Collectively, we think that drug delivery systems for nucleic acid drugs could be potential in clinic to promote the improvement of liver cancer therapy.
Key words: liver cancer; delivery system; nucleic acid drugs; gene therapy; non-viral vectors
Wanwan Liu , Dan Li , Kexin Deng , Junyu Liu , Jisong Zhang , Can Yang Zhang . Advances in Nucleic Acid Drug Delivery Systems for Liver Cancer Treatment[J]. Acta Chimica Sinica, 2024 , 82(12) : 1260 -1273 . DOI: 10.6023/A24090258
[1] | Llovet, J. M.; Kelley, R. K.; Villanueva, A.; Singal, A. G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R. S. Nat. Rev. Dis. Primers 2021, 7, 1. |
[2] | Zheng, R.; Qu, C.; Zhang, S.; Zeng, H.; Sun, K.; Gu, X.; Xia, C.; Yang, Z.; Li, H.; Wei, W.; Chen, W.; He, J. Chin. J. Cancer Res. 2018, 30, 571. |
[3] | Craig, A. J.; von Felden, J.; Garcia-Lezana, T.; Sarcognato, S.; Villanueva, A. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 3. |
[4] | Yang, C.; Zhang, H.; Zhang, L.; Zhu, A. X.; Bernards, R.; Qin, W.; Wang, C. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 4. |
[5] | Dai, Q.; Zhang, C.; Yuan, Z.; Sun, Q.; Jiang, Y. Expert Opin. Drug Discov. 2020, 15, 243. |
[6] | Le Grazie, M.; Biagini, M. R.; Tarocchi, M.; Polvani, S.; Galli, A. World J. Hepatol. 2017, 9, 907. |
[7] | Cabral, L. K. D.; Tiribelli, C.; Sukowati, C. H. C. Cancers 2020, 12, 6. |
[8] | Fornari, F.; Giovannini, C.; Piscaglia, F.; Gramantieri, L. J. Hepatocell. Carcino. 2021, 8, 741. |
[9] | Singal, A. G.; Kanwal, F.; Llovet, J. M. Nat. Rev. Clin. Oncol. 2023, 20, 12. |
[10] | Galle, P. R.; Dufour, J.-F.; Peck-Radosavljevic, M.; Trojan, J.; Vogel, A. Future Oncol. 2021, 17, 1237. |
[11] | Zhang, H.; Zhang, W.; Jiang, L.; Chen, Y. Biomark. Res. 2022, 10, 3. |
[12] | Sonbol, M. B.; Riaz, I. B.; Naqvi, S. A. A.; Almquist, D. R.; Mina, S.; Almasri, J.; Shah, S.; Almader-Douglas, D.; Uson Junior, P. L. S.; Mahipal, A.; Wee, W.; Jin, Z.; Mody, K.; Starr, J.; Borad, M. J.; Ahn, D. H.; Murad, M. H.; Bekaii-Saab, T. JAMA Oncol. 2020, 6, e204930. |
[13] | Li, J.; Wang, Y.; Zhu, Y.; Oupicky, D. J. Control. Release 2013, 172, 589. |
[14] | Xu, L.; Anchordoquy, T. J. Pharm. Sci. 2011, 100, 38. |
[15] | Chakraborty, E.; Sarkar, D. Cancers 2022, 14, 11. |
[16] | Xu, W.; He, W.; Du, Z.; Zhu, L.; Huang, K.; Lu, Y.; Luo, Y. Angew. Chem. Int. Ed. 2021, 60, 6890. |
[17] | Raemdonck, K.; Martens, T. F.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Adv. Drug Delivery Rev. 2013, 65, 1123. |
[18] | Quemener, A. M.; Bachelot, L.; Forestier, A.; Donnou-Fournet, E.; Gilot, D.; Galibert, M.-D. WIREs RNA 2020, 11, e1594. |
[19] | Bajan, S.; Hutvagner, G. Cells 2020, 9, 1. |
[20] | Shang, R.; Lee, S.; Senavirathne, G.; Lai, E. C. Nat. Rev. Genet. 2023, 24, 12. |
[21] | Mirzaei, S.; Mahabady, M. K.; Zabolian, A.; Abbaspour, A.; Fallahzadeh, P.; Noori, M.; Hashemi, F.; Hushmandi, K.; Daneshi, S.; Kumar, A. P.; Aref, A. R.; Samarghandian, S.; Makvandi, P.; Khan, H.; Hamblin, M. R.; Ashrafizadeh, M.; Zarrabi, A. Life Sci. 2021, 275, 119368. |
[22] | Wang, Y.; Xie, Y.; Kilchrist, K. V.; Li, J.; Duvall, C. L.; Oupicky, D. ACS Appl. Mater. Interfaces 2020, 12, 4308. |
[23] | Chen, Y.; Xu, N.; Hu, Z.-L. J. Biol. Eng. 2020, 36, 622. (in Chinese) |
[23] | (陈毓, 许诺, 胡振林, 生物工程学报, 2020, 36, 622.) |
[24] | Zeng, R.-X.; Chen, P. Acta Chim. Sinica 2024, 82, 53. (in Chinese) |
[24] | (曾如馨, 陈鹏, 化学学报, 2024, 82, 53.) |
[25] | Sharma, V. K.; Rungta, P.; Prasad, A. K. RSC Adv. 2014, 4, 16618. |
[26] | Lieberman, J. Nat. Struct. Mol. Biol. 2018, 25, 5. |
[27] | Okumura, K.; Nakase, M.; Inui, M.; Nakamura, S.; Watanabe, Y.; Tagawa, T. J. Gene Med. 2008, 10, 910. |
[28] | Jain, S.; Venkataraman, A.; Wechsler, M. E.; Peppas, N. A. Adv. Drug Delivery Rev. 2021, 179, 114000. |
[29] | Paunovska, K.; Loughrey, D.; Dahlman, J. E. Nat. Rev. Genet. 2022, 23, 5. |
[30] | Zeng, Z.-X.; Wu, J.-Y.; Wu, J.-Y.; Li, Y.-N.; Fu, Y.-K.; Zhang, Z.-B.; Liu, D.-Y.; Li, H.; Ou, X.-Y.; Zhuang, S.-W.; Yan, M.-L. Hepatol. Int. 2023, 18, 651. |
[31] | Jia, L.-T.; Chen, S.-Y.; Yang, A.-G. Cancer Treat Rev, 2012, 38, 868. |
[32] | Reed, J. C. Cancer Cell 2003, 3, 17. |
[33] | Ghobrial, I. M.; Witzig, T. E.; Adjei, A. A. Nat. Rev. Drug Discov. 2023, 22, 127. |
[34] | Karjoo, Z.; Chen, X.; Hatefi, A. Adv. Drug Delivery Rev. 2016, 99, 113. |
[35] | Duarte, S.; Carle, G.; Faneca, H.; Lima, M. C. P. de; Pierrefite-Carle, V. Cancer Lett. 2012, 324, 160. |
[36] | Anderson, D. G.; Peng, W.; Akinc, A.; Hossain, N.; Kohn, A.; Padera, R.; Langer, R.; Sawicki, J. A. PNAS 2004, 101, 16028. |
[37] | Yu, X.; Wang, T.; Li, Y.; Li, Y.; Bai, B.; Fang, J.; Han, J.; Li, S.; Xiu, Z.; Liu, Z.; Yang, X.; Li, Y.; Zhu, G.; Jin, N.; Shang, C.; Li, X.; Zhu, Y. Cancer Med. 2023, 12, 8306. |
[38] | Ma, J.-L.; Han, S.-X.; Zhao, J.; Zhang, D.; Wang, L.; Li, Y.-D.; Zhu, Q. Int. J. Oncol. 2012, 41, 1013. |
[39] | Wang, J.; Lu, X.-X.; Chen, D.-Z.; Li, S.-F.; Zhang, L.-S. World J. Gastroenterol. 2004, 10, 400. |
[40] | Santo, D.; Cordeiro, R. A.; Mendon?a, P. V.; Serra, A. C.; Coelho, J. F. J.; Faneca, H. Biomacromolecules 2023, 24, 1274. |
[41] | Reghupaty, S. C.; Sarkar, D. Cancers 2019, 11, 9. |
[42] | Iimuro, Y.; Fujimoto, J. J. Hepatobiliary Pancreat Surg. 2003, 10, 45. |
[43] | Christou, C.; Stylianou, A.; Gkretsi, V. Cells 2024, 13, 2. |
[44] | Younis, M. A.; Khalil, I. A.; Elewa, Y. H. A.; Kon, Y.; Harashima, H. J. Control. Release 2021, 331, 335. |
[45] | Hassin, O.; Oren, M. Nat. Rev. Drug Discov. 2023, 22, 2. |
[46] | Xiao, Y.; Chen, J.; Zhou, H.; Zeng, X.; Ruan, Z.; Pu, Z.; Jiang, X.; Matsui, A.; Zhu, L.; Amoozgar, Z.; Chen, D. S.; Han, X.; Duda, D. G.; Shi, J. Nat. Commun. 2022, 13, 1. |
[47] | Han, R.; Wang, Y.; Lu, L. Pharmaceutics 2024, 16, 1. |
[48] | Zhou, L.; Yi, W.; Zhang, Z.; Shan, X.; Zhao, Z.; Sun, X.; Wang, J.; Wang, H.; Jiang, H.; Zheng, M.; Wang, D.; Li, Y. Natl. Sci. Rev. 2023, 10, nwad214. |
[49] | Ge, N.-L.; Ye, S.-L.; Zheng, N.; Sun, R.-X.; Liu, Y.-K.; Tang, Z.-Y. World J. Gastroenterol. 2003, 9, 2182. |
[50] | Qian, Y.; Chen, Y.-Q.; Wu, F.; Liu, C.-X.; Hong, T.-T.; Li, W.; Chen, Y.; Zhou, X. Chinese J. Chem. 2019, 37, 588. |
[51] | Wu, Q.; Tang, Y.-Y.; Yu, M.; Zhang, Y.-Y.; Li, X.-M. Prog. Chem. 2020, 32, 927. (in Chinese) |
[51] | (吴晴, 唐一源, 余淼, 张悦莹, 李杏梅, 化学进展, 2020, 32, 927.) |
[52] | Giacca, M.; Zacchigna, S. J. Control. Release 2012, 161, 377. |
[53] | Dicks, M. D. J.; Spencer, A. J.; Edwards, N. J.; Wadell, G.; Bojang, K.; Gilbert, S. C.; Hill, A. V. S.; Cottingham, M. G. PLOS ONE 2012, 7, e40385. |
[54] | Mah, C.; Byrne, B. J.; Flotte, T. R. Clin. Pharmacokinet. 2002, 41, 901. |
[55] | Wilson, J. M. NEJM 1996, 334, 1185. |
[56] | Reichenbach, P.; Giordano Attianese, G. M. P.; Ouchen, K.; Cribioli, E.; Triboulet, M.; Ash, S.; Saillard, M.; Vuillefroy de Silly, R.; Coukos, G.; Irving, M. Nat. Biomed. Eng. 2023, 7, 9. |
[57] | Nayerossadat, N.; Maedeh, T.; Ali, P. A. Adv. Biomed. Res. 2012, 1, 27. |
[58] | Crystal, R. G. Hum. Gene Ther. 2014, 25, 3. |
[59] | Benihoud, K.; Yeh, P.; Perricaudet, M. Curr. Opin. Biotech. 1999, 10, 440. |
[60] | Wang, Z.; Zhang, X. Cytotherapy 2021, 23, 1045. |
[61] | Oudjedi, A.; Allali, A.; Bekli, A.; Lounis, M.; Ben Saad, H.; Boukoufa, M. Phys. Sportsmed. 2024, 52, 134. |
[62] | Barouch, D. H.; Kik, S. V.; Weverling, G. J.; Dilan, R.; King, S. L.; Maxfield, L. F.; Clark, S.; Ng’ang’a, D.; Brandariz, K. L.; Abbink, P.; Sinangil, F.; de Bruyn, G.; Gray, G. E.; Roux, S.; Bekker, L.-G.; Dilraj, A.; Kibuuka, H.; Robb, M. L.; Michael, N. L.; Anzala, O.; Amornkul, P. N.; Gilmour, J.; Hural, J.; Buchbinder, S. P.; Seaman, M. S.; Dolin, R.; Baden, L. R.; Carville, A.; Mansfield, K. G.; Pau, M. G.; Goudsmit, J. Vaccine 2011, 29, 5203. |
[63] | Nat. Biotechnol. 2022, 40, 5. |
[64] | Sung, Y.; Kim, S. Biomater 2019, 23, 8. |
[65] | Wahane, A.; Waghmode, A.; Kapphahn, A.; Dhuri, K.; Gupta, A.; Bahal, R. Molecules 2020, 25, 12. |
[66] | Ma, Y.; Deng, L.; Li, S.-G. J. Biol. Eng. 2022, 38, 2087. (in Chinese) |
[66] | (马跃, 邓莉, 李善刚, 生物工程学报, 2022, 38, 2087.) |
[67] | Foster, D. J.; Brown, C. R.; Shaikh, S.; Trapp, C.; Schlegel, M. K.; Qian, K.; Sehgal, A.; Rajeev, K. G.; Jadhav, V.; Manoharan, M.; Kuchimanchi, S.; Maier, M. A.; Milstein, S. Mol. Ther. 2018, 26, 708. |
[68] | Kinberger, G. A.; Prakash, T. P.; Yu, J.; Vasquez, G.; Low, A.; Chappell, A.; Schmidt, K.; Murray, H. M.; Gaus, H.; Swayze, E. E.; Seth, P. P. Bioorg. Med. Chem. Lett. 2016, 26, 3690. |
[69] | Springer, A. D.; Dowdy, S. F. Nucleic Acid Ther. 2018, 28, 109. |
[70] | Rabiee, N.; Ahmadi, S.; Arab, Z.; Bagherzadeh, M.; Safarkhani, M.; Nasseri, B.; Rabiee, M.; Tahriri, M.; Webster, T. J.; Tayebi, L. Int. J. Nanomed. 2020, 15, 4237. |
[71] | Kurosaki, T.; Higuchi, N.; Kawakami, S.; Higuchi, Y.; Nakamura, T.; Kitahara, T.; Hashida, M.; Sasaki, H. Gene 2012, 491, 205. |
[72] | Wang, S.; Reinhard, S.; Li, C.; Qian, M.; Jiang, H.; Du, Y.; L?chelt, U.; Lu, W.; Wagner, E.; Huang, R. Mol. Ther. 2017, 25, 1556. |
[73] | Wan, T.; Pan, Q.; Liu, C.; Guo, J.; Li, B.; Yan, X.; Cheng, Y.; Ping, Y. Nano Lett. 2021, 21, 9761. |
[74] | Li, C.; Si, X.; Li, J.-B. Acta Chim. Sinica 2023, 81, 1240. (in Chinese) |
[74] | (李琛, 司笑, 李金波, 张艳, 化学学报, 2023, 81, 1240.) |
[75] | Uehara, K.; Harumoto, T.; Makino, A.; Koda, Y.; Iwano, J.; Suzuki, Y.; Tanigawa, M.; Iwai, H.; Asano, K.; Kurihara, K.; Hamaguchi, A.; Kodaira, H.; Atsumi, T.; Yamada, Y.; Tomizuka, K. Nucleic Acids Res. 2022, 50, 4840. |
[76] | Son, S. J.; Bai, X.; Lee, S. B. Drug Discov. Today 2007, 12, 650. |
[77] | Guo, K.; Zhao, X.; Dai, X.; Zhao, N.; Xu, F.-J. J. Gene Med. 2019, 21, e3084. |
[78] | Jun Loh, X.; Lee, T.-C.; Dou, Q.; Roshan Deen, G. Biomater. Sci. 2016, 4, 70. |
[79] | Luther, D. C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y.-W.; Nagaraj, H.; Rotello, V. M. Adv. Drug Deliver. Rev. 2020, 156, 188. |
[80] | Rhim, W.-K.; Kim, J.-S.; Nam, J.-M. Small 2008, 4, 1651. |
[81] | K.c, R. B.; Thapa, B.; Bhattarai, N. Nanotechnol. Rev. 2014, 3, 269. |
[82] | Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.; Wang, P. C.; Dong, A.; Liang, X.-J. ACS Nano 2010, 4, 5505. |
[83] | Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S. A.; Jha, T. Eur. J. Med. Chem. 2020, 194, 112260. |
[84] | Yu, S.; Wen, R.; Wang, H.; Zha, Y.; Qiu, L.; Li, B.; Xue, W.; Ma, D. Chem. Mater. 2019, 31, 3992. |
[85] | Bharali, D. J.; Klejbor, I.; Stachowiak, E. K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E. J.; Prasad, P. N.; Stachowiak, M. K. PNAS 2005, 102, 11539. |
[86] | Cs?g?r, Zs.; Nacken, M.; Sameti, M.; Lehr, C.-M.; Schmidt, H. Mater. Sci. Eng. C 2003, 23, 93. |
[87] | Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Acta Pharm. Sin. B 2018, 8, 165. |
[88] | Liu, H.-J.; Luan, X.; Feng, H.-Y.; Dong, X.; Yang, S.-C.; Chen, Z.-J.; Cai, Q.-Y.; Lu, Q.; Zhang, Y.; Sun, P.; Zhao, M.; Chen, H.-Z.; Lovell, J. F.; Fang, C. Adv. Funct. Mater. 2018, 28, 1801118. |
[89] | Choi, Y. S.; Lee, M. Y.; David, A. E.; Park, Y. S. Mol. Cell. Toxicol. 2014, 10, 1. |
[90] | Sokolova, V.; Epple, M. Angew. Chem. Int. Ed. 2008, 47, 1382. |
[91] | Guo, X.; Huang, L. Acc. Chem. Res. 2012, 45, 971. |
[92] | Li, J.-X.; Geng, S.; Hu, S.-J.; Zhou, M. Chem. Eng. Prog. 2023, 42, 2003. (in Chinese) |
[92] | (李建雄, 耿爽, 胡树坚, 周明, 化工进展, 2023, 42, 2003.) |
[93] | Kirpotin, D.; Hong, K.; Mullah, N.; Papahadjopoulos, D.; Zalipsky, S. FEBS Lett. 1996, 388, 115. |
[94] | Zhang, X.; Zhao, S.; Gao, Z.; Zhou, J.; Xia, Y.; Tian, J.; Shi, C.; Wang, Z. Nano Res. 2021, 14, 2432. |
[95] | Jiang, L.; Li, L.; He, X.; Yi, Q.; He, B.; Cao, J.; Pan, W.; Gu, Z. Biomaterials 2015, 52, 126. |
[96] | Wang, C.; Zhang, Y.; Dong, Y. Acc. Chem. Res. 2021, 54, 4283. |
[97] | Billingsley, M. M.; Singh, N.; Ravikumar, P.; Zhang, R.; June, C. H.; Mitchell, M. J. Nano Lett. 2020, 20, 1578. |
[98] | Tenchov, R.; Bird, R.; Curtze, A. E.; Zhou, Q. ACS Nano 2021, 15, 16982. |
[99] | Shen, Y.; Hu, G.-X.; Zhang, H.-X.; Qi, L.-L.; Luo, C.-C. Acta Chim. Sinica 2013, 71, 323. (in Chinese) |
[99] | (沈银, 胡桂香, 张华星, 齐莉莉, 骆成才, 化学学报, 2013, 71, 323.) |
[100] | Fu, Y.; Wang, H.-J.; Zhang, J.; Yu, X.-Q. Acta Chim. Sinica 2013, 71, 585. (in Chinese) |
[100] | (付云, 王海蛟, 张骥, 余孝其, 化学学报, 2013, 71, 585.) |
[101] | Cui, L.-L.; Zhang, Y. Journal of Pharmacy 2023, 58, 826. (in Chinese) |
[101] | (崔丽莉, 张勇, 药学学报, 2023, 58, 826.) |
[102] | Yang, M.; Zhang, Z.; Jin, P.; Jiang, K.; Xu, Y.; Pan, F.; Tian, K.; Yuan, Z.; Liu, X. E.; Fu, J.; Wang, B.; Yan, H.; Zhan, C.; Zhang, Z. Int. J. Pharm. 2024, 650, 123695. |
[103] | Fenton, O. S.; Kauffman, K. J.; McClellan, R. L.; Kaczmarek, J. C.; Zeng, M. D.; Andresen, J. L.; Rhym, L. H.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Angew. Chem. Int. Ed. 2018, 57, 13582. |
[104] | Bragonzi, A.; Boletta, A.; Biffi, A.; Muggia, A.; Sersale, G.; Cheng, S. H.; Bordignon, C.; Assael, B. M.; Conese, M. Gene Ther. 1999, 6, 1995. |
[105] | Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Nat. Nanotechnol. 2020, 15, 4. |
[106] | Li, C.; Yang, T.; Weng, Y.; Zhang, M.; Zhao, D.; Guo, S.; Hu, B.; Shao, W.; Wang, X.; Hussain, A.; Liang, X.-J.; Huang, Y. Bioact 2022, 9, 590. |
[107] | Chien, P.-Y.; Wang, J.; Carbonaro, D.; Lei, S.; Miller, B.; Sheikh, S.; Ali, S. M.; Ahmad, M. U.; Ahmad, I. Cancer Gene Ther. 2005, 12, 3. |
[108] | Rosenblum, D.; Gutkin, A.; Kedmi, R.; Ramishetti, S.; Veiga, N.; Jacobi, A. M.; Schubert, M. S.; Friedmann-Morvinski, D.; Cohen, Z. R.; Behlke, M. A.; Lieberman, J.; Peer, D. Sci. Adv. 2020, 6, eabc9450. |
[109] | Azarnezhad, A.; Samadian, H.; Jaymand, M.; Sobhani, M.; Ahmadi, A. Crit. Rev. Toxicol. 2020, 50, 148. |
[110] | Nakamura, T.; Nakade, T.; Yamada, K.; Sato, Y.; Harashima, H. Int. J. Pharm. 2021, 609, 121140. |
[111] | Peng, L.; Wagner, E. Biomacromolecules 2019, 20, 3613. |
[112] | Sunshine, J. C.; Bishop, C. J.; Green, J. J. Ther. Deliv. 2011, 2, 493. |
[113] | Kumar, R.; Santa Chalarca, C. F.; Bockman, M. R.; Bruggen, C. V.; Grimme, C. J.; Dalal, R. J.; Hanson, M. G.; Hexum, J. K.; Reineke, T. M. Chem. Rev. 2021, 121, 11527. |
[114] | Zhang, W.; Yao, Z.-J.; Deng, W. Chin. J. Org. Chem. 2018, 38, 2713. (in Chinese) |
[114] | (张薇, 姚子健, 邓维, 有机化学, 2018, 38, 2713.) |
[115] | Creusat, G.; Rinaldi, A.-S.; Weiss, E.; Elbaghdadi, R.; Remy, J.-S.; Mulherkar, R.; Zuber, G. Bioconjugate Chem. 2010, 21, 994. |
[116] | Kurtulus, I.; Yilmaz, G.; Ucuncu, M.; Emrullahoglu, M.; Remzi Becer, C.; Bulmus, V. Polym. Chem. 2014, 5, 1593. |
[117] | Yezhelyev, M. V.; Qi, L.; O’Regan, R. M.; Nie, S.; Gao, X. J. Am. Chem. Soc. 2008, 130, 9006. |
[118] | Pandey, A. P.; Sawant, K. K. Mater. Sci. Eng. C 2016, 68, 904. |
[119] | Zhang, W.; Xu, N.-W.; Yao, Z.-J.; Li, K.; Zhu, Y.; Chen, L.-Y.; Ye, W.-L.; Deng, W. Chin. J. Org. Chem. 2016, 36, 2039. (in Chinese) |
[119] | (张薇, 徐妮为, 姚子健, 李宽, 朱玉, 陈良艳, 叶文玲, 邓维, 有机化学, 2016, 36, 2039.) |
[120] | Bae, Y.; Song, S. J.; Mun, J. Y.; Ko, K. S.; Han, J.; Choi, J. S. Polymers 2017, 9, 6. |
[121] | Chen, Q.; Su, L.; He, X.; Li, J.; Cao, Y.; Wu, Q.; Qin, J.; He, Z.; Huang, X.; Yang, H.; Li, J. Biomacromolecules 2022, 23, 2116. |
[122] | Pu, X.; Li, Z.-J.; Shi, J.-Q.; Zhu, Y.-Q.; Du, J.-Z. Acta Chim. Sinica 2023, 81, 1438. (in Chinese) |
[122] | (溥旭, 李泽娟, 石隽秋, 朱云卿, 杜建忠, 化学学报, 2023, 81, 1438.) |
[123] | Dong, Y.; Yao, C.; Zhu, Y.; Yang, L.; Luo, D.; Yang, D. Chem. Rev., 2020, 120, 9420. |
[124] | Seeman, N. C.; Sleiman, H. F. Nat. Rev. Mater. 2017, 3, 17068. |
[125] | Edwardson, T. G. W.; Lau, K. L.; Bousmail, D.; Serpell, C. J.; Sleiman, H. F. Nature Chem. 2016, 8, 162. |
[126] | Xie, L.; Ding, X.; Budry, R.; Mao, G. IJN 2018, 13, 4943. |
[127] | Kumar, S.; Garg, P.; Pandey, S.; Kumari, M.; Hoon, S.; Jang, K.-J.; Kapavarapu, R.; Choung, P.-H.; Sobral, A. J. F. N.; Hoon Chung, J. J. Mater. Chem. B 2015, 3, 3465. |
[128] | Von Erlach, T.; Zwicker, S.; Pidhatika, B.; Konradi, R.; Textor, M.; Hall, H.; Lühmann, T. Biomaterials 2011, 32, 5291. |
[129] | Guo, Y.; Zhang, Q.; Zhu, Q.; Gao, J.; Zhu, X.; Yu, H.; Li, Y.; Zhang, C. Sci. Adv. 2022, 8, eabn2941. |
[130] | Wu, X.; Yang, C.; Wang, H.; Lu, X.; Shang, Y.; Liu, Q.; Fan, J.; Liu, J.; Ding, B. J. Am. Chem. Soc. 2023, 145, 9343. |
[131] | He, Y.; Li, D.; Wu, L.; Yin, X.; Zhang, X.; Patterson, L. H.; Zhang, J. Adv. Funct. Mater. 2023, 33, 2212277. |
[132] | Lai, X.-Y.; Wang, Z.-Y.; Zheng, Y.-T.; Chen, Y.-M. Prog. Chem. 2019, 31, 783. (in Chinese) |
[132] | (赖欣宜, 王志勇, 郑永太, 陈永明, 化学进展, 2019, 31, 783.) |
[133] | Duan, L.; Xu, L.; Xu, X.; Qin, Z.; Zhou, X.; Xiao, Y.; Liang, Y.; Xia, J. Nanoscale 2021, 13, 1387. |
[134] | Sun, B.; Ju, W.-W.; Wang, T.; Sun, X.-J.; Zhao, T.; Lu, X.-M.; Lu, F.; Fan, Q.-L. Acta Chim. Sinica 2023, 81, 757. (in Chinese) |
[134] | (孙博, 琚雯雯, 王涛, 孙晓军, 赵婷, 卢晓梅, 陆峰, 范曲立, 化学学报, 2023, 81, 757.) |
[135] | Qi, X.-P.; Wang, F.; Zhang, J. Acta Chim. Sinica 2023, 81, 548. (in Chinese) |
[135] | (齐学平, 王飞, 张健, 化学学报, 2023, 81, 548.) |
[136] | He, C.; Lu, K.; Liu, D.; Lin, W. J. Am. Chem. Soc. 2014, 136, 5181. |
[137] | Zhao, L.-D.; Zuo, P.; Yin, B.-C.; Hong, C.-L.; Ye, B.-C. Acta Chim. Sinica 2020, 78, 1076. (in Chinese) |
[137] | (赵丽东, 左鹏, 尹斌成, 洪成林, 叶邦策, 化学学报, 2020, 78, 1076.) |
[138] | Das, C. K.; Jena, B. C.; Banerjee, I.; Das, S.; Parekh, A.; Bhutia, S. K.; Mandal, M. Mol. Pharmaceutics 2019, 16, 24. |
[139] | Kim, S. M.; Yang, Y.; Oh, S. J.; Hong, Y.; Seo, M.; Jang, M. J. Control. Release 2017, 266, 8. |
/
〈 |
|
〉 |