Original article

Molecular Design of Anthracene-Based Electron-Transporting Materials for Efficient Blue Perovskite QLEDs

  • Keying Tan ,
  • Ping Fang ,
  • Dupeng Ding ,
  • Shichen Yuan ,
  • Chen Liu ,
  • Shiyu Yang ,
  • Changting Wei ,
  • Bo Xu
Expand
  • a MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    b Qian Xuesen College, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2024-09-10

  Online published: 2024-11-20

Supported by

National Undergraduate Training Program for Innovation and Entrepreneurship(202310288035); National Natural Science Foundation of China(22279059); National Natural Science Foundation of China(62404104); Natural Science Foundation of Jiangsu Province(BK20240083); Natural Science Foundation of Jiangsu Province(BK20241465); Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB844); China Postdoctoral Science Foundation(2023M731687); NJUST Large Instrument Equipment Open Fund

Abstract

Perovskite quantum dot light-emitting diodes (Pe-QLEDs) hold significant promise for high-definition flexible displays due to their exceptional color purity, wide color gamut, versatile light-emitting properties, and cost-effective solution processing capabilities. However, the varying transport capacities of the carrier-transporting layers in commonly used multilayer ‘sandwich’ electroluminescent device structures pose limitations on their development. In this study, we synthesized two asymmetric anthracene-based compounds, designated as B1 and B3, featuring a large π-conjugated anthracene-based skeleton as their core, which exhibit sufficiently high thermal stability suitable for vacuum thermal deposition method. Additionally, we optimized the group size and push-pull electronic characteristics of the peripheral groups to enhance carrier transport capability. From the measured space-charge-limited current data of electron-only devices, we calculated high electron transport mobilities of 4.78×10−5 cm2•V−1•s−1 for B1 and 4.13×10−5 cm2•V−1•s−1 for B3. Based on these impressive physicochemical properties, the external quantum efficiency (EQE) of the sky-blue Pe-QLEDs prepared with B1 and B3 as the electron-transporting layer (ETL) reached 6.32% and 8.82%, respectively, while the maximum brightness was 4631.77 cd•m−2 and 3585.29 cd•m−2, respectively. B1- and B3-based Pe-QLEDs devices outperformed the control device using 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) as the ETL, which exhibited an EQE of 6.11% and brightness of 3041.77 cd•m−2. Notably, both B1 and B3 also enhance the electron injection capability of the devices and significantly reduce the device turn-on voltage (2.20 V and 2.40 V, respectively), primarily attributed to their more balanced carrier transport within the devices. Ultimately, transient electroluminescence and electrochemical impedance spectroscopy confirmed that B1 and B3 facilitate the rapid establishment of steady-state emission within the device and effectively reduce carrier accumulation at the interfaces. Among these electron-transporting materials (ETMs), B3 enhances the effective recombination ratio, resulting in improved device efficiency. This study highlights the critical role of balanced carrier transport in enhancing device efficiency and provides valuable insights for the design of high electron mobility ETMs aimed at constructing efficient Pe-QLEDs.

Cite this article

Keying Tan , Ping Fang , Dupeng Ding , Shichen Yuan , Chen Liu , Shiyu Yang , Changting Wei , Bo Xu . Molecular Design of Anthracene-Based Electron-Transporting Materials for Efficient Blue Perovskite QLEDs[J]. Acta Chimica Sinica, 2025 , 83(1) : 1 -9 . DOI: 10.6023/A24090272

References

[1]
Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
[2]
Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468.
[3]
Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
[4]
Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S.; Im, S. H.; Friend, R. H.; Lee, T.-W. Science 2015, 350, 1222.
[5]
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692.
[6]
Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162.
[7]
Peng, Y.; Zhao, Y.; Yang, J.; Zhang, X.; Cheng, J. Acta Chim. Sinica 2024, 82, 879 (in Chinese).
[7]
( 彭亚晶, 赵雨新, 杨金辉, 仉昕昕, 程佳玲, 化学学报, 2024, 82, 879.)
[8]
Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Nature Mater. 2018, 17, 394.
[9]
Li, H.; Feng, Y.; Zhu, M.; Yun, G.; Fan, C.; Cui, Q.; Cai, Q.; Yang, K.; He, P.; Dai, X.; Huang, J.; Ye, Z. Nature Nanotech. 2024, 19, 638.
[10]
Wang, J.; Li, M.; Cai, B.; Ren, H.; Fan, W.; Xu, L.; Yao, J.; Wang, S.; Song, J. Angew. Chem. Int. Ed. 2024, 63, e202410689.
[11]
Nong, Y.; Yao, J.; Li, J.; Xu, L.; Yang, Z.; Li, C.; Song, J. Adv. Mater. 2024, 36, 2402325.
[12]
Lim, J.; Bae, W. K.; Kwak, J.; Lee, S.; Lee, C.; Char, K. Opt. Mater. Express 2012, 2, 594.
[13]
Zaiats, G.; Ikeda, S.; Kamat, P. V. NPG Asia Mater. 2020, 12, 57.
[14]
Zhao, L.; Lee, K. M.; Roh, K.; Khan, S. U. Z.; Rand, B. P. Adv. Mater. 2019, 31, 1805836.
[15]
Xu, L.; Li, J.; Cai, B.; Song, J.; Zhang, F.; Fang, T.; Zeng, H. Nat. Commun. 2020, 11, 3902.
[16]
Zou, C.; Liu, Y.; Ginger, D. S.; Lin, L. Y. ACS Nano 2020, 14, 6076.
[17]
Yuan, S.; Zheng, X.; Shen, W.-S.; Liu, J.; Cui, L.-S.; Zhang, C.; Tian, Q.-S.; Wu, J.-J.; Zhou, Y.-H.; Wang, X.-D.; Wang, Z.-K.; Han, P.; Luther, J. M.; Bakr, O. M.; Liao, L.-S. ACS Energy Lett. 2022, 7, 1348.
[18]
Zhang, X.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Nano Lett. 2016, 16, 1415.
[19]
Zhang, W.; Smith, J.; Hamilton, R.; Heeney, M.; Kirkpatrick, J.; Song, K.; Watkins, S. E.; Anthopoulos, T.; McCulloch, I. J. Am. Chem. Soc. 2009, 131, 10814.
[20]
Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; Zeng, H. Adv. Mater. 2017, 29, 1603885.
[21]
Yang, F.; Chen, H.; Zhang, R.; Liu, X.; Zhang, W.; Zhang, J.; Gao, F.; Wang, L. Adv. Funct. Mater. 2020, 30, 1908760.
[22]
Jia, J.; Zhu, L.; Wei, Y.; Wu, Z.; Xu, H.; Ding, D.; Chen, R.; Ma, D.; Huang, W. J. Mater. Chem. C 2015, 3, 4890.
[23]
Fang, T.; Wang, T.; Li, X.; Dong, Y.; Bai, S.; Song, J. Sci. Bull. 2021, 66, 2302253.
[24]
Yuan, S.; Fang, T.; Huang, J.; Li, X.; Wei, C.; Zhou, Y.; Li, Y.; Zheng, X.; Huang, J.; Su, J.; Baryshnikov, G.; Choy, W. C. H.; Zeng, H.; Xu, B. ACS Energy Lett. 2023, 8, 818.
[25]
Lin, L.; Zhang, Q.; Ni, Y.; Shang, L.; Zhang, X.; Yan, Z.; Zhao, Q.; Chen, J. Chem 2022, 8, 1822.
[26]
Li, X.-S.; Peng, Y.-Q.; Yang, Q.-S.; Xing, H.-W.; Lu, F.-P. Acta Phys. Sin. 2007, 56, 5441 (in Chinese).
[26]
( 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平, 物理学报, 2007, 56, 5441.)
[27]
Wang, C.; Dong, H.; Jiang, L.; Hu, W. Chem. Soc. Rev. 2018, 47, 422.
[28]
Ye, S.; Wang, Y.; Guo, R.; Zhang, Q.; Lv, X.; Duan, Y.; Leng, P.; Sun, S.; Wang, L. Chem. Eng. J. 2020, 393, 124694.
[29]
Liu, H.; Kang, L.; Li, J.; Liu, F.; He, X.; Ren, S.; Tang, X.; Lv, C.; Lu, P. J. Mater. Chem. C 2019, 7, 10273.
[30]
Zhang, D.; Song, X.; Li, H.; Cai, M.; Bin, Z.; Huang, T.; Duan, L. Adv. Mater. 2018, 30, 1707590.
[31]
Zhang, D.; Duan, L. J. Phys. Chem. Lett. 2019, 10, 2528.
[32]
Wang, Q.; Chen, Y.; Yan, C.; Zeng, X.; Fu, X.; Pan, L.; Cao, J.; Yang, S.; Li, W.; Chen, X.; Yang, W. ACS Energy Lett. 2023, 8, 3710.
[33]
Gao, D.; Li, R.; Chen, X.; Chen, C.; Wang, C.; Zhang, B.; Li, M.; Shang, X.; Yu, X.; Gong, S.; Pauporté, T.; Yang, H.; Ding, L.; Tang, J.; Chen, J. Adv. Mater. 2023, 35, 2301028.
[34]
Ye, S.; Guo, R.; Xiang, S.; Zhang, Q.; Lv, X.; Liu, W.; Fan, L.; Leng, P.; Sun, S.; Wang, L. Mater. Chem. Front. 2019, 3, 812.
[35]
Jia, M.; Xu, X.; Peng, J.; Zhang, J.; Yao, C.; Li, L. Adv. Opt. Mater. 2016, 4, 1635.
[36]
Pan, J.; Wei, C.; Wang, L.; Zhuang, J.; Huang, Q.; Su, W.; Cui, Z.; Nathan, A.; Lei, W.; Chen, J. Nanoscale 2018, 10, 592.
[37]
Blakesley, J. C.; Castro, F. A.; Kylberg, W.; Dibb, G. F. A.; Arantes, C.; Valaski, R.; Cremona, M.; Kim, J. S.; Kim, J.-S. Org. Electron. 2014, 15, 1263.
[38]
Malliaras, G. G.; Salem, J. R.; Brock, P. J.; Scott, C. Phys. Rev. B 1998, 58, 13411.
[39]
Javaux, C.; Mahler, B.; Dubertret, B.; Shabaev, A.; Rodina, A. V.; Efros, A. L.; Yakovlev, D. R.; Liu, F.; Bayer, M.; Camps, G.; Biadala, L.; Buil, S.; Quelin, X.; Hermier, J. P. Nature Nanotech. 2013, 8, 206.
[40]
Shen, Y.; Hu, X.-M.; Guo, M.-L.; Li, Y.-Q.; Tang, J.-X. J. Phys. Chem. Lett. 2024, 15, 7916.
[41]
Xu, M.; Peng, Q.; Zou, W.; Gu, L.; Xu, L.; Cheng, L.; He, Y.; Yang, M.; Wang, N.; Huang, W.; Wang, J. Appl. Phys. Lett. 2019, 115, 041102.
[42]
Wei, C.; Xu, B.; Zhang, M.; Su, Z.; Gu, J.; Guo, W.; Gao, X.; Su, W.; Cui, Z.; Jeon, S.; Fan, Z.; Zeng, H. eScience 2024, 4, 100227.
[43]
Tang, P.; Xie, L.; Xiong, X.; Wei, C.; Zhao, W.; Chen, M.; Zhuang, J.; Su, W.; Cui, Z. ACS Appl. Mater. Interfaces 2020, 12, 13087.
[44]
Li, X.; Haghshenas, M.; Wang, L.; Huang, J.; Sheibani, E.; Yuan, S.; Luo, X.; Chen, X.; Wei, C.; Xiang, H.; Baryshnikov, G.; Sun, L.; Zeng, H; Xu, B. ACS Energy Lett. 2023, 8, 1445.
Outlines

/