Communication

Photoinduced FeCl3‑catalyzed Cross-Dehydrogenative Alkylation of Benzoxazin-2-ones with Alkanes

  • Cui Xin ,
  • Jun Jiang ,
  • Zi-Wei Deng ,
  • Li-Juan Ou ,
  • Wei-Min He
Expand
  • a Key Laboratory of Food & Environment & Drug Monitoring and Testing of Universities in Hunan Province, Hunan Police Academy, Changsha 410138, China
    b School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
    c School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
    d National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
These authors contributed equally to this work.

Received date: 2024-10-29

  Online published: 2024-11-20

Supported by

Scientific Research Fund of Hunan Provincial Education Department(22B0944)

Abstract

Homogeneous visible-light photoredox catalysis has emerged as a powerful tool in modern organic synthesis, which utilizes inexhaustible light to facilitate carbon-carbon and carbon-heteroatom bond formation under eco-friendly and mild conditions. Due to the incapablity of most organic compounds to absorb visible light, homogeneous photocatalysts such as precious metals (rhodium and iridium-complexes) and elaborate organic dyes were often employed through their visible light-driven electron/energy transfer to sensitize organic molecules in photoredox catalysis. However, these photocatalysts are not conducive to large-scale production due to the relatively high cost. Iron is an ideal candidate for economical and eco-friendly catalysis because of its abundant availability and nontoxicity. Recently, iron-photocatalyzed bond formation reactions via ligand-to-metal charge transfer (LMCT) have attracted huge attention. Functionalized benzoxazin-2-ones are important N-heterocycles found in many natural products, bioactive molecules and pharmaceuticals. Among these benzoxazin-2-one derivatives, alkylated benzoxazin-2-ones have received significant attention due to their valuable biological and pharmacological activities. From a synthetic point of view, the direct C—H alkylation of benzoxazin-2-ones represents one of the most straightforward and efficient methods for producing alkylated benzoxazin-2-ones due to its high atom and step economy. Alkanes are low cost and abundant feedstock materials, which have been widely used as the alkylation reagents in organic synthesis. In the present work, we report the development of iron-catalyzed C—H alkylation of benzoxazin-2-ones with alkanes via photoinduced LMCT. With FeCl3 as the photocatalyst, ambient air as the oxidant, tetrabutylammonium chloride as the promoter, a series of 3-alkylbenzoxazin-2-ones were efficiently synthesized under mild and eco-friendly conditions. The chlorine radical generated in situ serves as a hydrogen atom-transfer reagent. In addition, the present reaction can be smoothly scaled-up to gram level, which indicates it could be applied in industrial synthesis of pharmaceuticals.

Cite this article

Cui Xin , Jun Jiang , Zi-Wei Deng , Li-Juan Ou , Wei-Min He . Photoinduced FeCl3‑catalyzed Cross-Dehydrogenative Alkylation of Benzoxazin-2-ones with Alkanes[J]. Acta Chimica Sinica, 2024 , 82(11) : 1109 -1113 . DOI: 10.6023/A24100329

References

[1]
(a) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
[1]
(b) Xu, H.; Zhang, J.; Zuo, J.; Wang, F.; Lü, J.; Hun, X.; Yang, D. Chin. J. Org. Chem. 2022, 42, 4037 (in Chinese).
[1]
(徐浩, 张杰, 左峻泽, 王丰晓, 吕健, 混旭, 杨道山, 有机化学, 2022, 42, 4037.)
[1]
(c) Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Chem. Rev. 2023, 123, 4237.
[1]
(d) Dong, J.-H.; Xuan, L.-M.; Wang, C.; Zhao, C.-X.; Wang, H.-F.; Yan, Q.-J.; Wang, W.; Chen, F.-E. Chin. J. Org. Chem. 2024, 44, 111 (in Chinese).
[1]
(董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿, 有机化学, 2024, 44, 111.)
[1]
(e) Li, K.; Long, X.; Huang, Y.; Zhu, S. Acta Chim. Sinica 2024, 82, 658 (in Chinese).
[1]
(李康葵, 龙先扬, 黄岳, 祝诗发, 化学学报, 2024, 82, 658.)
[1]
(f) Hou, J.-C.; Cai, W.; Ji, H.-T.; Ou, L.-J.; He, W.-M. Chin. Chem. Lett. 2025, 36, 110469.
[2]
Bell, J. D.; Murphy, J. A. Chem. Soc. Rev. 2021, 50, 9540.
[3]
(a) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[3]
(b) Liu, Q.; Huo, C.; Fu, Y.; Du, Z. Org. Biomol. Chem. 2022, 20, 6721.
[4]
Bhavyesh, D.; Soliya, S.; Konakanchi, R.; Begari, E.; Ashalu, K. C.; Naveen, T. Chem. Asian J. 2024, 19, e202301056.
[5]
(a) Achari, B.; Mandal, S. B.; Dutta, P. K.; Chowdhury, C. Synlett 2004, 2004, 2449.
[5]
(b) Ejaz, M.; Mohamed, M. G.; Kuo, S.-W. Polym. Chem. 2023, 14, 2494.
[6]
(a) McAllister, S. D.; Rizvi, G.; Anavi-Goffer, S.; Hurst, D. P.; Barnett-Norris, J.; Lynch, D. L.; Reggio, P. H.; Abood, M. E. J. Med. Chem. 2003, 46, 5139.
[6]
(b) Pamerla, M.; Rama Sekhara Reddy, D.; Sreenivasa Rao, B.; Bodipati, N.; Murthy, Y. L. N. Med. Chem. Res. 2015, 24, 611.
[7]
(a) Bagdi, A. K.; Rahman, M.; Bhattacherjee, D.; Zyryanov, G. V.; Ghosh, S.; Chupakhin, O. N.; Hajra, A. Green Chem. 2020, 22, 6632.
[7]
(b) Zhao, B.; Prabagar, B.; Shi, Z. Chem 2021, 7, 2585.
[7]
(c) Xu, H.; Li, X.; Ma, J.; Zuo, J.; Song, X.; Lv, J.; Yang, D. Chin. Chem. Lett. 2023, 34, 108403.
[7]
(d) Dai, L.-L.; Zhong, G.-F. Chin. J. Org. Chem. 2023, 43, 2589 (in Chinese).
[7]
(戴琳泷, 钟国富, 有机化学, 2023, 43, 2589.)
[7]
(e) Chen, X.-M.; Song, L.; Pan, J.; Zeng, F.; Xie, Y.; Wei, W.; Yi, D. Chin. Chem. Lett. 2024, 35, 110112.
[7]
(f) Xu, J.; Liang, C.; Shen, J.; Chen, Q.; Li, W.; Zhang, P. Green Chem. 2023, 25, 1975.
[7]
(g) Zhu, J.; Hong, Y.; Wang, Y.; Guo, Y.; Zhang, Y.; Ni, Z.; Li, W.; Xu, J. ACS Catal. 2024, 14, 6247.
[7]
(h) Jiang, Y.-F.; Ouyang, W.-T.; Ji, H.-T.; Hou, J.-C.; Li, T.; Luo, Q.-X.; Wu, C.; Ou, L.-J.; He, W.-M. J. Org. Chem. 2024, 89, 13970.
[8]
(a) Liu, S.; Huang, Y.; Qing, F.-L.; Xu, X.-H. Org. Lett. 2018, 20, 5497.
[8]
(b) Wang, L.; Zhang, Y.; Li, F.; Hao, X.; Zhang, H.-Y.; Zhao, J. Adv. Synth. Catal. 2018, 360, 3969.
[8]
(c) Zhang, W.; Pan, Y.-L.; Yang, C.; Li, X.; Wang, B. Org. Chem. Front. 2019, 6, 2765.
[8]
(d) Wang, L.; Zhao, J.; Sun, Y.; Zhang, H.-Y.; Zhang, Y. Eur. J. Org. Chem. 2019, 2019, 6935.
[8]
(e) Garrido-Castro, A. F.; Gini, A.; Maestro, M. C.; Alemán, J. Chem. Commun. 2020, 56, 3769.
[9]
Byun, Y.; Moon, J.; An, W.; Mishra, N. K.; Kim, H. S.; Ghosh, P.; Kim, I. S. J. Org. Chem. 2021, 86, 12247.
[10]
(a) Wang, M.; Zhang, Y.; Yang, X.; Sun, P. Org. Biomol. Chem. 2022, 20, 2467.
[10]
(b) Wang, B.; Ascenzi Pettenuzzo, C.; Singh, J.; McCabe, G. E.; Clark, L.; Young, R.; Pu, J.; Deng, Y. ACS Catal. 2022, 12, 10441.
[10]
(c) Zhang, Q.; Liu, S.; Lei, J.; Zhang, Y.; Meng, C.; Duan, C.; Jin, Y. Org. Lett. 2022, 24, 1901.
[10]
(d) Song, H.-Y.; Xiao, F.; Jiang, J.; Wu, C.; Ji, H.-T.; Lu, Y.-H.; Wang, K.-L.; He, W.-M. Chin. Chem. Lett. 2023, 34, 108509.
[10]
(e) Tan, H.; Zhang, C.; Deng, Y.; Zhang, M.; Cheng, X.; Wu, J.; Zheng, D. Org. Lett. 2023, 25, 2883.
[10]
(f) Tu, J.-L.; Hu, A.-M.; Guo, L.; Xia, W. J. Am. Chem. Soc. 2023, 145, 7600.
[10]
(g) Qiao, L.; Yang, W.; Zhao, X.; Li, E.; Chen, X.; Qu, L.; Yu, B. Org. Chem. Front. 2024, 11, 5791.
[10]
(h) Niu, K.-K.; Cui, J.; Dong, R.-Z.; Yu, S.; Liu, H.; Xing, L.-B. Chem. Commun. 2024, 60, 2409.
[11]
(a) Li, J.; Huang, C.-Y.; Li, C.-J. Trends Chem. 2022, 4, 479.
[11]
(b) Reis Concei??o, N.; Mahmudov, K. T.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Coord. Chem. Rev. 2025, 522, 216175.
[11]
(c) Yuan, X.-Y.; Si, Y.-F.; Li, X.; Wu, S.-J.; Zeng, F.-L.; Lv, Q.-Y.; Yu, B. Org. Chem. Front. 2022, 9, 2728.
[12]
(a) Juliá, F. ChemCatChem 2022, 14, e202200916.
[12]
(b) Dou, Q.; Wang, T.-M.; Fang, L.-J.; Zhai, H.-B.; Cheng, B. Chin. J. Org. Chem. 2023, 43, 1386 (in Chinese).
[12]
(窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌, 有机化学, 2023, 43, 1386.)
[12]
(c) Yuan, X.-Y.; Wang, C.-C.; Yu, B. Chin. Chem. Lett. 2024, 35, 109517.
[12]
(d) Li, H.-C.; Zhang, M.; Lv, Q.; Sun, K.; Chen, X.-L.; Qu, L.; Yu, B. Chin. Chem. Lett. 2025, 36, 110579.
[12]
(e) Ji, H.-T.; Lu, Y.-H.; Liu, Y.-T.; Huang, Y.-L.; Tian, J.-F.; Liu, F.; Zeng, Y.-Y.; Yang, H.-Y.; Zhang, Y.-H.; He, W.-M. Chin. Chem. Lett. 2025, 36, 110568.
[13]
(a) Chen, X.; Ouyang, W.-T.; Li, X.; He, W.-M. Chin. J. Org. Chem. 2023, 43, 4213 (in Chinese).
[13]
(陈祥, 欧阳文韬, 李潇, 何卫民, 有机化学, 2023, 43, 4213.)
[13]
(b) Yi, R.-N.; He, W.-M. Chin. J. Org. Chem. 2023, 43, 2985 (in Chinese).
[13]
(易荣楠, 何卫民, 有机化学, 2023, 43, 2985.)
[13]
(c) Xin, C.; He, W.-M. Chin. J. Org. Chem. 2024, 44, 2955 (in Chinese).
[13]
(辛翠, 何卫民, 有机化学, 2024, 44, 2955.)
[13]
(d) Hou, J.-C.; Ji, H.-T.; Lu, Y.-H.; Wang, J.-S.; Xu, Y.-D.; Zeng, Y.-Y.; He, W.-M. Chin. Chem. Lett. 2024, 35, 109514.
[13]
(e) Huang, X.-J.; Ji, H.-T.; Li, X.; Luo, Q.-X.; Li, T.; Ou, L.-J.; He, W.-M. J. Org. Chem. 2024, 89, 10654.
[13]
(f) Ouyang, W.-T.; Jiang, J.; Jiang, Y.-F.; Li, T.; Liu, Y.-Y.; Ji, H.-T.; Ou, L.-J.; He, W.-M. Chin. Chem. Lett. 2024, 35, 110038.
[14]
Liu, T.; Xue, F.; Chen, Z.; Cheng, Z.; Cao, W.; Wang, B.; Jin, W.; Xia, Y.; Zhang, Y.; Liu, C. J. Catal. 2022, 414, 76.
[15]
(a) Jin, Y.; Wang, L.; Zhang, Q.; Zhang, Y.; Liao, Q.; Duan, C. Green Chem. 2021, 23, 9406.
[15]
(b) Pan, Z.-T.; Shen, L.-M.; Dagnaw, F. W.; Zhong, J.-J.; Jian, J.-X.; Tong, Q.-X. Chem. Commun. 2023, 59, 1637.
Outlines

/