Review

Research Progress on the Dynamic Color Response Mechanism and Applications of Three-Dimensional Photonic Crystals

  • Feng Tian ,
  • Huateng Li ,
  • Guowei Zhao ,
  • Changchun Wang
Expand
  • a Phomera Metamaterials Inc., Zhuhai 519099, China
    b State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China

Received date: 2024-10-27

  Online published: 2024-11-22

Supported by

Key research and development project of Guangdong Province(2020B010190003)

Abstract

Photonic crystals (PCs) exhibit unique dynamic color-changing properties, making them highly promising for applications in smart displays, sensing, anti-counterfeiting, information encryption, soft robotics and flexible electronics. This kind of materials, made up of periodic structured materials with varying refractive indices or dielectric constants, exhibit unique optical properties, including photonic band gap (PBG), photon localization, slow photon effect and fluorescence enhancement. Especially, by forming PBG, photonic crystal can reflect specific visible wavelength to create vivid structural color. Based on the construction direction of the periodic structured materials, photonic crystals can be categorized into one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) structures, each exhibiting unique optical properties. Among them, 3D photonic crystals have gained considerable attention due to the bottom-up straightforward and efficient fabrication methods by using colloidal particles. Over the past three decades, significant advancements have been made in 3D photonic crystal, driven by the development of various colloidal assembly techniques. These methods typically employ organic or inorganic microspheres embedded within functional polymer matrix, yielding 3D photonic structures such as opal, inverse opal, double-inverse opal, etc. Notably, 3D photonic crystals exhibit dynamic color responses to external stimuli, including temperature, pH, light, humidity, mechanical force, etc. The dynamic color changes arise from the adjustment of the 3D internal structure such as degree of ordering, effective refractive index (neff) and lattice spacing (d). Such color changes are highly stable and resistant to photobleaching, presenting significant advantages over traditional dyes and pigments. While numerous reviews discuss and analyze the synthesis and preparation of 3D photonic crystals, this review focuses on their critical role in dynamic responsive color changing systems, systematically detailing the mechanisms underlying structural color variation and illustrating their representative visual applications. Finally, this review outlines future development trends in dynamic 3D photonic crystal materials, with the aim of encouraging further exploration and expansion of their technological potential.

Cite this article

Feng Tian , Huateng Li , Guowei Zhao , Changchun Wang . Research Progress on the Dynamic Color Response Mechanism and Applications of Three-Dimensional Photonic Crystals[J]. Acta Chimica Sinica, 2025 , 83(1) : 72 -86 . DOI: 10.6023/A24100322

References

[1]
Li, Z.; Yin, Y. Adv. Mater. 2019, 31, 1807061.
[2]
Li, D.; Gao, Z.; Zhang, B.; Ma, W.; Tang, B.; Zhang, S. Dyes Pigment. 2024, 222, 111887.
[3]
Middleton, R.; Tunstad, S. A.; Knapp, A.; Winters, S.; Mccallum, S.; Whitney, H. Sci. Adv. 2024, 10, eadk4219.
[4]
Yang, F.; Li, B.; Li, Y.; Duan, Y.; Ding, Y.; Xiong, Y.; Guo, S. Chem. Eng. J. 2024, 481, 148386.
[5]
Hou, X.; Li, F.; Song, Y.; Li, M. J. Phys. Chem. Lett. 2022, 13, 2885.
[6]
Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Rep. Prog. Phys. 2008, 71, 76401.
[7]
Wang, D.; Liu, Z.; Wang, H.; Li, M.; Guo, L. J.; Zhang, C. Nanophotonics. 2023, 12, 1019.
[8]
Liu, X.; Qin, L.; Zhan, Y.; Chen, M.; Yu, Y. Acta Chim. Sinica 2020, 78, 478 (in Chinese).
[8]
( 刘晓珺, 秦朗, 詹媛媛, 陈萌, 俞燕蕾, 化学学报, 2020, 78, 478.)
[9]
Li, G.; Leng, M.; Wang, S.; Ke, Y.; Luo, W.; Ma, H.; Guan, J.; Long, Y. Mater. Today 2023, 69, 133.
[10]
Frka-Petesic, B.; Parton, T. G.; Honorato-Rios, C.; Narkevicius, A.; Ballu, K.; Shen, Q.; Lu, Z.; Ogawa, Y.; Haataja, J. S.; Droguet, B. E.; Parker, R. M.; Vignolini, S. Chem. Rev. 2023, 123, 12595.
[11]
Wang, J.; Zhao, K.; Ye, C.; Song, Y. Nano Res. 2024, 17, 1837.
[12]
Park, T. H.; Yu, S.; Park, J.; Park, C. Sci. Technol. Adv. Mater. 2023, 24, 2156256.
[13]
Dai, S.; Li, Q.; Li, W.; Zhang, Y.; Dou, M.; Xu, R.; Wang, T.; Lu, X.; Wang, F.; Li, J. Compr. Rev. Food. Sci. Food Saf. 2022, 21, 4900.
[14]
Hou, J.; Li, M.; Song, Y. Angew. Chem. Int. Ed. 2018, 57, 2544.
[15]
Lova, P.; Manfredi, G.; Comoretto, D. Adv. Opt. Mater. 2018, 6, 1800730.
[16]
Kou, D.; Gao, L.; Lin, R.; Zhang, S.; Ma, W. Adv. Sci. 2024, 2310060.
[17]
Morrone, J.; Ramallo, J. I.; Boissière, C.; Angelomé, P. C.; Fuertes, M. C. Chem. Mater. 2023, 35, 8897.
[18]
Hwang, T. G.; Cho, D. W.; Hwang, D.-H.; Jung, Y. J.; Park, I.; Kim, G. E.; Park, J. M. Chem. Eng. J. 2023, 473, 145448.
[19]
Cai, Z.; Zhang, J.; Xue, F.; Hong, Z.; Punihaole, D.; Asher, S. A. Anal. Chem. 2014, 86, 4840.
[20]
Armstrong, E.; Khunsin, W.; Osiak, M.; Bl?mker, M.; Torres, C. M. S.; O'Dwyer, C. Small 2014, 10, 1895.
[21]
Cerjan, A.; J?rg, C.; Vaidya, S.; Augustine, S.; Benalcazar, W. A.; Hsu, C. W.; von Freymann, G.; Rechtsman, M. C. Sci. Adv. 2021, 7, eabk1117.
[22]
Hoeven, J. E. S. V.; Shneidman, A. V.; Nicolas, N. J.; Aizenberg, J. Acc. Chem. Res. 2022, 55, 1809.
[23]
Liu, G.; Gao, Z.; Wang, Q.; Xi, X.; Hu, Y.; Wang, M.; Liu, C.; Lin, X.; Deng, L.; Yang, S. A.; Zhou, P.; Yang, Y.; Chong, Y.; Zhang, B. Nature 2022, 609, 925.
[24]
Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zheng, H.; Teng, J.; Zhang, A. Chem. Soc. Rev. 2021, 50, 5898.
[25]
Vogel, N.; Retsch, M.; Fustin, C.; Del Campo, A.; Jonas, U. Chem. Rev. 2015, 115, 6265.
[26]
Li, K.; Li, C.; Li, H.; Li, M.; Song, Y. iScience 2021, 24, 102121.
[27]
Li, M.; Lu, Q.; Zhu, J.; Zhang, L. Acta Polym. Sin. 2019, 50, 271 (in Chinese).
[27]
( 李苗苗, 吕全乾, 朱锦涛, 张连斌, 高分子学报, 2019, 50, 271.)
[28]
Hu, L.; Liu, X.; Liu, C.; Song, Y.; Li, M. Acta Chim. Sinica 2023, 81, 809 (in Chinese).
[28]
( 胡立伟, 刘宪虎, 刘春太, 宋延林, 李明珠, 化学学报, 2023, 81, 809.)
[29]
Hu, Y.; Tian, Z.; Ma, D.; Qi, C.; Yang, D.; Huang, S. Adv. Colloid Interface Sci. 2024, 324, 103089.
[30]
Hu, Y.; Yu, S.; Wei, B.; Yang, D.; Ma, D.; Huang, S. Mater. Horiz. 2023, 10, 3895.
[31]
Zhu, K.; Fang, C.; Pu, M.; Song, J.; Wang, D.; Zhou, X. J. Mater. Sci. Technol. 2023, 141, 78.
[32]
Kang, Y.; Zhao, J.; Zeng, Y.; Du, X.; Gu, Z. Small 2024, 2403525.
[33]
Meng, Z.; Liu, Y.; Huang, H.; Wu, S. Adv. Colloid Interface Sci. 2024, 333, 103272.
[34]
Zhang, W.; Hu, Y.; Feng, P.; Li, Z.; Zhang, H.; Zhang, B.; Xu, D.; Qi, J.; Wang, H.; Xu, L.; Li, Z.; Xia, M.; Li, J.; Chai, R.; Tian, L. Adv. Sci. 2024, 11, 2403173.
[35]
Guan, Y.; Zhang, Y. Acta Polym. Sin. 2017, (11), 1739 (in Chinese).
[35]
( 关英, 张拥军, 高分子学报, 2017, (11), 1739.)
[36]
Tian, F.; Huang, H.; Tian, F.; Zhao, G.; Wang, C. Acta Polym. Sin. 2024, 55, doi: 10.11777/j.issn1000-3304.2024.24210 (in Chinese).
[36]
( 田丰, 黄翰闻, 田方浩, 赵国伟, 汪长春, 高分子学报, 2024, 55, doi: 10.11777/j.issn1000-3304.2024.24210.)
[37]
Vigneron, J. P.; Simonis, P. Phys. B 2012, 407, 4032.
[38]
Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C. Nat. Commun. 2015, 6, 6368.
[39]
Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
[40]
John, S. Phys. Rev. Lett. 1987, 58, 2486.
[41]
Wang, H.; Zhang, H.; Chen, Z.; Zhao, Y.; Gu, Z.; Shang, L. Prog. Mater. Sci. 2023, 135, 101091.
[42]
Fenzl, C.; Hirsch, T.; Wolfbeis, O. S. Angew. Chem. Int. Ed. 2014, 53, 3318.
[43]
Aguirre, C. I.; Reguera, E.; Stein, A. Adv. Funct. Mater. 2010, 20, 2565.
[44]
Armstrong, E.; O'Dwyer, C. J. Mater. Chem. C 2015, 3, 6109.
[45]
Li, M.; Lyu, Q.; Peng, B.; Chen, X.; Zhang, L.; Zhu, J. Adv. Mater. 2022, 34, 2110488.
[46]
Ogawa, S.; Imada, M.; Yoshimoto, S.; Okano, M.; Noda, S. Science 2004, 305, 227.
[47]
Qi, M.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G.; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
[48]
Aoki, K.; Miyazaki, H. T.; Hirayama, H.; Inoshita, K.; Baba, T.; Sakoda, K.; Shinya, N.; Aoyagi, Y. Nat. Mater. 2003, 2, 117.
[49]
Miklyaev, Y. V.; Meisel, D. C.; Blanco, A.; von Freymann, G.; Busch, K.; Koch, W.; Enkrich, C.; Deubel, M.; Wegener, M. Appl. Phys. Lett. 2003, 82, 1284.
[50]
Scrimgeour, J.; Sharp, D. N.; Blanford, C. F.; Roche, O. M.; Denning, R. G.; Turberfield, A. J. Adv. Mater. 2006, 18, 1557.
[51]
Gratson, G. M.; García-Santamaría, F.; Lousse, V.; Xu, M.; Fan, S.; Lewis, J. A.; Braun, P. V. Adv. Mater. 2006, 18, 461.
[52]
Tétreault, N.; von Freymann, G.; Deubel, M.; Hermatschweiler, M.; Pérez-Willard, F.; John, S.; Wegener, M.; Ozin, G. A. Adv. Mater. 2006, 18, 457.
[53]
Deubel, M.; Wegener, M.; Kaso, A.; John, S. Appl. Phys. Lett. 2004, 85, 1895.
[54]
Xie, A.; Li, Q.; Xi, Y.; Zhu, L.; Chen, S. Acc. Mater. Res. 2023, 4, 403.
[55]
Lee, J.; Je, K.; Kim, S. Adv. Funct. Mater. 2016, 26, 4587.
[56]
Tang, B.; Zheng, X.; Lin, T.; Zhang, S. Dyes Pigment. 2014, 104, 146.
[57]
Vlasov, Y. A.; Bo, X.; Sturm, J. C.; Norris, D. J. Nature 2001, 414, 289.
[58]
Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K. H.; Aizenberg, J. PNAS 2010, 107, 10354.
[59]
Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C. Angew. Chem. Int. Ed. 2009, 48, 6212.
[60]
Shen, X.; Du, J.; Sun, J.; Guo, J.; Hu, X.; Wang, C. ACS Appl. Mater. Interfaces 2020, 12, 39639.
[61]
Li, M.; Zhou, B.; Lyu, Q.; Jia, L.; Tan, H.; Xie, Z.; Xiong, B.; Xue, Z.; Zhang, L.; Zhu, J. Mater. Chem. Front. 2019, 3, 2707.
[62]
Zhou, C.; Qi, Y.; Zhang, S.; Niu, W.; Wu, S.; Ma, W.; Tang, B. Langmuir 2020, 36, 1379.
[63]
Yu, S.; Cao, X.; Niu, W.; Wu, S.; Ma, W.; Zhang, S. ACS Appl. Mater. Interfaces 2019, 11, 22777.
[64]
Yu, S.; Tian, Z.; Yang, D.; Zhou, X.; Ma, D.; Huang, S. Adv. Mater. Interfaces 2021, 8, 2100789.
[65]
Zhang, Z.; Wei, B.; Yang, D.; Huang, S. Adv. Mater. Interfaces 2022, 9, 2201252.
[66]
Chen, K.; Zhang, Y.; Ge, J. ACS Appl. Mater. Interfaces 2019, 11, 45256.
[67]
Kim, J. H.; Lee, G. H.; Kim, J. B.; Kim, S. Adv. Funct. Mater. 2020, 30, 2001318.
[68]
Fu, Q.; Yu, W.; Bao, G.; Ge, J. Nat. Commun. 2022, 13, 7007.
[69]
Ge, J.; Kwon, S.; Yin, Y. J. Mater. Chem. 2010, 20, 5777.
[70]
Zhang, X.; Ran, Y.; Fu, Q.; Ge, J. Small 2022, 18, 2106533.
[71]
Zhong, K.; Li, J.; Liu, L.; Van Cleuvenbergen, S.; Song, K.; Clays, K. Adv. Mater. 2018, 30, 1707246.
[72]
Xiao, X.; Yang, Z.; Yu, Q.; Shi, D.; Dong, W.; Zhang, H.; Chen, M. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128749.
[73]
Chen, Y.; Zuo, Z.; Liu, Z.; Yin, Y. Small 2022, 18, 2204484.
[74]
Wu, Y.; Sun, R.; Ren, J.; Zhang, S.; Wu, S. Adv. Funct. Mater. 2023, 33, 2210047.
[75]
Li, C.; Xue, Q.; Ji, Z.; Li, Y.; Zhang, H.; Li, D. Soft Matter 2020, 16, 3063.
[76]
Wu, Y.; Wang, Y.; Zhang, S.; Wu, S. ACS Nano 2021, 15, 15720.
[77]
Zheng, W.; Zhang, N.; Murtaza, G.; Meng, Z.; Wu, L.; Qiu, L. ACS Appl. Mater. Interfaces 2024, 16, 13041.
[78]
Wu, Y.; Sun, R.; Han, Y.; Zhang, S.; Wu, S. Chem. Eng. J. 2023, 451, 139075.
[79]
Jeon, J.; Bukharina, D.; Kim, M.; Kang, S.; Kim, J.; Zhang, Y.; Tsukruk, V. Responsive Mater. 2024, 2, e20230032.
[80]
Kamenjicki, M.; Lednev, I. K.; Mikhonin, A.; Kesavamoorthy, R.; Asher, S. A. Adv. Funct. Mater. 2003, 13, 774.
[81]
Kamenjicki Maurer, M.; Lednev, I. K.; Asher, S. A. Adv. Funct. Mater. 2005, 15, 1401.
[82]
Yang, X.; Jin, H.; Tao, X.; Yao, Y.; Xie, Y.; Lin, S. Adv. Funct. Mater. 2023, 33, 2304424.
[83]
Liu, J.; Wang, Y.; Wang, J.; Zhou, G.; Ikeda, T.; Jiang, L. ACS Appl. Mater. Interfaces 2021, 13, 12383.
[84]
Yang, B.; Cai, F.; Huang, S.; Yu, H. Angew. Chem. Int. Ed. 2020, 59, 4035.
[85]
Yang, B.; Li, L.; Du, K.; Fan, B.; Long, Y.; Song, K. Chem. Commun. 2018, 54, 3057.
[86]
Fu, F.; Chen, Z.; Wang, H.; Liu, C.; Liu, Y.; Zhao, Y. Nanoscale 2019, 11, 10846.
[87]
Liu, J.; Ma, D.; Qi, C.; Yang, D.; Huang, S. ACS Appl. Mater. Interfaces 2024, 16, 2740.
[88]
Hu, Y.; Zhang, Y.; Chen, T.; Yang, D.; Ma, D.; Huang, S. ACS Appl. Mater. Interfaces 2020, 12, 45174.
[89]
He, J.; Shen, X.; Li, H.; Yao, Y.; Guo, J.; Wang, C. ACS Appl. Mater. Interfaces 2022, 14, 27251.
[90]
Liao, J.; Zhu, C.; Gao, B.; Zhao, Z.; Liu, X.; Tian, L.; Zeng, Y.; Zhou, X.; Xie, Z.; Gu, Z. Adv. Funct. Mater. 2019, 29, 1902954.
[91]
Zhang, Y.; Wang, Y.; Wang, H.; Yu, Y.; Zhong, Q.; Zhao, Y. Small 2019, 15, 1902198.
[92]
Wu, P.; Shen, X.; Sch?fer, C. G.; Pan, J.; Guo, J.; Wang, C. Nanoscale 2019, 11, 20015.
[93]
Liu, W.; Li, L.; Liu, B.; Liu, R.; Zhang, G.; Wu, Z. J. Colloid Interface Sci. 2021, 603, 834.
[94]
Zhao, K.; Cao, X.; Alsaid, Y.; Cheng, J.; Wang, Y.; Zhao, Y.; He, X.; Zhang, S.; Niu, W. Chem. Eng. J. 2021, 426, 130870.
[95]
Hu, Y.; Yang, D.; Ma, D.; Huang, S. Chem. Eng. J. 2022, 429, 132342.
[96]
Fang, Y.; Fei, W.; Shen, X.; Guo, J.; Wang, C. Mater. Horiz. 2021, 8, 2079.
[97]
Zhang, Y.; Zang, Z.; Lu, R.; Zhang, S.; Tang, B. Ind. Eng. Chem. Res. 2024, 63, 1442.
[98]
Xu, J.; Shang, M.; Ni, X.; Cao, Y. ACS Appl. Nano Mater. 2020, 3, 8052.
[99]
Wang, M.; He, L.; Xu, W.; Wang, X.; Yin, Y. Angew. Chem. Int. Ed. 2015, 54, 7077.
[100]
Bao, G.; Yu, W.; Fu, Q.; Ge, J. Adv. Opt. Mater. 2022, 10, 2201188.
[101]
Wang, D.; Sun, X.; Wu, W.; Li, M.; Zhao, X.; Ren, H.; Wang, B.; Li, J.; Zhang, X.; Wu, G.; Wang, X. J. Mater. Chem. C 2024, 12, 4296.
[102]
Bao, G.; Yu, W.; Fu, Q.; Ge, J. J. Mater. Chem. C 2023, 11, 3513.
[103]
Shin, J. H.; Park, J. Y.; Han, S. H.; Lee, Y. H.; Sun, J.; Choi, S. S. Adv. Sci. 2022, 9, 2202897.
[104]
Liao, J.; Ye, C.; Guo, J.; Garciamendez-Mijares, C. E.; Agrawal, P.; Kuang, X.; Japo, J. O.; Wang, Z.; Mu, X.; Li, W.; Ching, T.; Mille, L. S.; Zhu, C.; Zhang, X.; Gu, Z.; Zhang, Y. S. Mater. Today 2022, 56, 29.
[105]
Wu, P.; Wang, J.; Jiang, L. Mater. Horiz. 2020, 7, 338.
[106]
Yu, W.; Zhao, Y.; Ge, J. J. Colloid. Interface. Sci. 2024, 659, 603.
[107]
Yu, W.; Zhao, Y.; Sheng, W.; Ge, J. Adv. Funct. Mater. 2023, 33, 2304474.
[108]
Wang, Z.; Zhang, S.; Tang, B. ACS Nano 2024, 18, 186.
[109]
Zhang, X.; Xu, C.; Gong, X. ACS Appl. Mater. Interfaces 2023, 15, 44589.
[110]
Zhou, C.; Qi, Y.; Zhang, S.; Niu, W.; Wu, S.; Ma, W.; Tang, B. Chem. Eng. J. 2022, 439, 135761.
[111]
Huang, N.; Gao, J.; Sheng, S.; Shang, Q.; Xian, Z.; Wang, J.; Liu, J. Nano Lett. 2023, 23, 7389.
[112]
Liu, C.; Xie, A.; Li, G.; Li, Q.; Wang, C.; Zhu, L.; Chen, S. ACS Appl. Polym. Mater. 2021, 3, 6130.
[113]
Huang, H.; Li, H.; Shen, X.; Gu, K.; Guo, J.; Wang, C. Chem. Eng. J. 2022, 429, 132437.
[114]
Wang, W.; Zhou, Y.; Yang, L.; Yang, X.; Yao, Y.; Meng, Y.; Tang, B. Adv. Funct. Mater. 2022, 32, 2204744.
[115]
Wu, S.; Liu, T.; Tang, B.; Li, L.; Zhang, S. ACS Appl. Mater. Interfaces 2019, 11, 27210.
[116]
Wu, S.; Huang, B.; Wu, Y.; Meng, Z.; Zhang, S. Nanoscale 2020, 12, 11460.
[117]
Lee, H. S.; Shim, T. S.; Hwang, H.; Yang, S.; Kim, S. Chem. Mater. 2013, 25, 2684.
[118]
Huang, H.; Li, H.; Yin, J.; Gu, K.; Guo, J.; Wang, C. Adv. Mater. 2023, 35, 2211117.
[119]
Wang, Z.; Meng, F.; Kong, M.; Guo, X.; Zhang, S.; Zhang, Y.; Tang, B. Small 2024, 20, 2305825.
[120]
Li, M.; Tan, H.; Jia, L.; Zhong, R.; Peng, B.; Zhou, J.; Xu, J.; Xiong, B.; Zhang, L.; Zhu, J. Adv. Funct. Mater. 2020, 30, 2000008.
[121]
Wei, B.; Hu, Y.; Yang, D.; Huang, S. Adv. Sensor Res. 2023, 2, 2200078.
[122]
Shen, X.; Wu, P.; Sch?fer, C. G.; Guo, J.; Wang, C. Nanoscale 2019, 11, 1253.
[123]
Huang, C.; Shang, Y.; Hua, J.; Yin, Y.; Du, X. ACS Nano 2023, 17, 10269.
[124]
Li, A.; Yang, D.; Cao, C.; Hu, Y.; Huang, S. Adv. Mater. Interfaces 2022, 9, 2200051.
[125]
Zhang, Z.; Wei, B.; Hu, Y.; Yang, D.; Ma, D.; Huang, S. Cell Rep. Phys. Sci. 2023, 4, 101387.
[126]
Guo, M.; Yu, X.; Zhao, J.; Wang, J.; Qing, R.; Liu, J.; Wu, X.; Zhu, L.; Chen, S. Sens. Actuators B Chem. 2021, 347, 130639.
[127]
Zhang, Y.; Han, P.; Zhou, H.; Wu, N.; Wei, Y.; Yao, X.; Zhou, J.; Song, Y. Adv. Funct. Mater. 2018, 28, 1802585.
[128]
Deng, J.; Chen, S.; Chen, J.; Ding, H.; Deng, D.; Xie, Z. ACS Appl. Mater. Interfaces 2018, 10, 34611.
[129]
Li, S.; Zeng, Y.; Hou, W.; Wan, W.; Zhang, J.; Wang, Y.; Du, X.; Gu, Z. Mater. Horiz. 2020, 7, 2944.
[130]
Li, Q.; Chen, Z.; Zhang, Y.; Ding, S.; Ding, H.; Wang, L.; Xie, Z.; Fu, Y.; Wei, M.; Liu, S.; Chen, J.; Wang, X.; Gu, Z. Nat. Commun. 2023, 14, 7369.
Outlines

/