Review

Research Progress on Copper(I)-Catalyzed Asymmetric Allylation of Ketones or Ketimines

  • Hui Li ,
  • Liang Yin
Expand
  • a Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, China
    b Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
; Tel.: 021-54925168

Received date: 2024-10-11

  Online published: 2024-11-26

Supported by

National Natural Science Foundation of China(22271302); Natural Science Foundation of Shanxi Province(202303021211189)

Abstract

Chiral tertiary homoallylic alcohol and chiral α,α-disubstituted homoallylic amine scaffolds are ubiquitous in numerous bioactive natural products and pharmaceutically relevant molecules. Thus, asymmetric synthesis of these compounds has attracted an increasing attention from synthetic chemists. Compared to traditional methods, transition-metal-catalyzed asymmetric allylation of ketones or ketimines serves as a powerful methodology for constructing these compounds due to its excellent atom- and step-economy. Recent progress on copper(I)-catalyzed asymmetric allylation of ketones or ketimines is summarized. Based on the strategies for the generation of allyl-copper(I) species in situ, this review is divided into three sections: reactions through transmetalation, three-component coupling reactions, and proton-transfer reactions. The mechanisms and potential applications of some representative strategies are also included. Finally, the future developments in this field are outlooked.

Cite this article

Hui Li , Liang Yin . Research Progress on Copper(I)-Catalyzed Asymmetric Allylation of Ketones or Ketimines[J]. Acta Chimica Sinica, 2024 , 82(12) : 1274 -1288 . DOI: 10.6023/A24100300

References

[1]
(a) Mizui, Y.; Sakai, T.; Iwata, M.; Uenaka, T.; Okamoto, K.; Shimizu, H.; Yamori, T.; Yoshimatsu, K.; Asada, M. J. Antibiot. 2004, 57, 188.
[1]
(b) Paterson, I.; Dalby, S. M.; Roberts, J. C.; Naylor, G. J.; Guzmán, E. A.; Isbrucker, R.; Pitts, T. P.; Linley, P.; Divlianska, D.; Reed, J. K.; Wright, A. E. Angew. Chem., Int. Ed. 2011, 50, 3219.
[1]
(c) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541.
[2]
(a) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757.
[2]
(b) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
[3]
(a) Read, J. A.; Woerpel, K. A. J. Org. Chem. 2017, 82, 2300.
[3]
(b) Bartolo, N. D.; Woerpel, K. A. J. Org. Chem. 2018, 83, 10197.
[4]
Cervera-Padrell, A. E.; Nielsen, J. P.; Pedersen, M. J.; Christensen, K. M.; Mortensen, A. R.; Skovby, T.; Dam-Johansen, K.; Kiil, S.; Gernaey, K. V. Org. Process Res. Dev. 2012, 16, 901.
[5]
Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 6536.
[6]
Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8910.
[7]
Kanai, M.; Wada, P.; Shibuguchi, T.; Shibasaki, M. Pure Appl. Chem. 2008, 80, 1055.
[8]
Shi, S.-L.; Xu, L.-W.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 6638.
[9]
Motoki, R.; Tomita, D.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2006, 47, 8083.
[10]
Iwamoto, H.; Hayashi, Y.; Ozawa, Y.; Ito, H. ACS Catal. 2020, 10, 2471.
[11]
Zanghi, J. M.; Meek, S. J. Angew. Chem., Int. Ed. 2020, 59, 8451.
[12]
Sun, B.; Ruan, L.-X.; Zhao, R.; Zhang, J.; Niu, R.; Luo, Q.; Zhang, Y.; Gao, L.; Shi, S.-L. Nat. Synth. 2024, 3, 1091.
[13]
Wada, R.; Shibuguchi, T.; Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7687.
[14]
Tsai, E. Y.; Liu, R. Y.; Yang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 2007.
[15]
Liu, R. Y.; Zhou, Y.; Yang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2019, 141, 2251.
[16]
Xu, M.; Lu, Q.; Gong, B.; Ti, W.; Lin, A.; Yao, H.; Gao, S. Angew. Chem., Int. Ed. 2023, 62, e202311540.
[17]
(a) Gupta, P.; Mahajan, N. New J. Chem. 2018, 42, 12296.
[17]
(b) Mushtaq, S.; Abbasi, B. H.; Uzair, B.; Abbasi, R. EXCLI Journal 2018, 17, 420.
[18]
Klake, R. K.; Edwards, M. D.; Sieber, J. D. Org. Lett. 2021, 23, 6444.
[19]
Collins, S.; Sieber, J. D. Org. Lett. 2023, 25, 1425.
[20]
Min, L.; Han, J.-C.; Zhang, W.; Gu, C.-C.; Zou, Y.-P.; Li, C.-C. Chem. Rev. 2023, 123, 4934.
[21]
Zhou, M.; Lin, Y.; Chen, X.-X.; Xu, G.; Chung, L. W.; Tang, W. Angew. Chem., Int. Ed. 2023, 62, e202300334.
[22]
Jiang, N.; Liu, P.-Z.; Pan, Z.-Z.; Wang, S.-Q.; Peng, Q.; Yin, L. Angew. Chem., Int. Ed. 2024, 63, e202402195.
[23]
Yang, Y.; Perry, I. B.; Lu, G.; Liu, P.; Buchwald, S. L. Science 2016, 353, 144.
[24]
Li, C.; Liu, R. Y.; Jesikiewicz, L. T.; Yang, Y.; Liu, P.; Buchwald, S. L. J. Am. Chem. Soc. 2019, 141, 5062.
[25]
Fu, B.; Yuan, X.; Li, Y.; Wang, Y.; Zhang, Q.; Xiong, T.; Zhang, Q. Org. Lett. 2019, 21, 3576.
[26]
(a) McManus, H. A.; Fleming, M. J.; Lautens, M. Angew. Chem., Int. Ed. 2007, 46, 433.
[26]
(b) Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govoni, S. J. Med. Chem. 1995, 38, 942.
[27]
Acharyya, R. K.; Kim, S.; Park, Y.; Han, J. T.; Yun, J. Org. Lett. 2020, 22, 7897.
[28]
Zhu, J.; Rahim, F.; Zhou, P.; Zhang, A.; Malcolmson, S. J. J. Am. Chem. Soc. 2024, 146, 20270.
[29]
(a) Tewes, B.; Frehland, B.; Schepmann, D.; Robaa, D.; Uengwetwanit, T.; Gaube, F.; Winckler, T.; Sippl, W.; Wu?nsch, B. J. Med. Chem. 2015, 58, 6293.
[29]
(b) Novoa, A.; Van Dorpe, S.; Wynendaele, E.; Spetea, M.; Bracke, N.; Stalmans, S.; Betti, C.; Chung, N. N.; Lemieux, C.; Zuegg, J.; Cooper, M. A.; Tourwé, D.; De Spiegeleer, B.; Schiller, P. W.; Ballet, S. J. Med. Chem. 2012, 55, 9549.
[30]
Li, D.; Park, Y.; Yoon, W.; Yun, H.; Yun, J. Org. Lett. 2019, 21, 9699.
[31]
Deng, X.-H.; Jiang, J.-X.; Jiang, Q.; Yang, T.; Chen, B.; He, L.; Chu, W.-D.; He, C.-Y.; Liu, Q.-Z. Org. Lett. 2022, 24, 4586.
[32]
Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 5046.
[33]
Zhao, Y.-S.; Tang, X.-Q.; Tao, J.-C.; Tian, P.; Lin, G.-Q. Org. Biomol. Chem. 2016, 14, 4400.
[34]
(a) Yeung, K.; Talbot, F. J. T.; Howell, G. P.; Pulis, A. P.; Procter, D. J. ACS Catal. 2019, 9, 1655.
[34]
(b) Deng, H.; Dong, Y.; Yu, S.; Yang, F.; Han, S.; Wu, J.; Liang, B.; Guo, H.; Zhang, C. Org. Lett. 2021, 23, 4431.
[34]
(c) Ashraf, M. A.; Tambe, S. D.; Cho, E. J. Bull. Korean Chem. Soc. 2021, 42, 683.
[35]
Jang, H.; Romiti, F.; Torker, S.; Hoveyda, A. H. Nat. Chem. 2017, 9, 1269.
[36]
Zhao, C.-Y.; Zheng, H.; Ji, D.-W.; Min, X.-T.; Hu, Y.-C.; Chen, Q.-A. Cell Rep. Phys. Sci. 2020, 1, 100067.
[37]
Liu, X.; Shi, S. Chin. J. Org. Chem. 2024, 44, 1884.
[38]
Feng, J.-J.; Xu, Y.; Oestreich, M. Chem. Sci. 2019, 10, 9679.
[39]
Yoon, W. S.; Han, J. T.; Yun, J. Adv. Synth. Catal. 2021, 363, 4953.
[40]
Li, D.; Park, Y.; Yun, J. Org. Lett. 2018, 20, 7526.
[41]
Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 5522.
[42]
Wei, X.-F.; Xie, X.-W.; Shimizu, Y.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 4647.
[43]
Zhong, F.; Pan, Z.-Z.; Zhou, S.-W.; Zhang, H.-J.; Yin, L. J. Am. Chem. Soc. 2021, 143, 4556.
[44]
Liu, J.; Su, B.; Chen, M. Org. Lett. 2021, 23, 6035.
[45]
Pan, Z.-Z.; Li, J.-H.; Tian, H.; Yin, L. Angew. Chem., Int. Ed. 2024, 63, e202315293.
[46]
Pan, Z.-Z.; Pan, D.; Li, J.-H.; Xue, X.-S.; Yin, L. J. Am. Chem. Soc. 2023, 145, 1749.
[47]
(a) Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835.
[47]
(b) Xie, Y.; Yu, C.; Li, T.; Tu, S.; Yao, C. Chem. Eur. J. 2015, 21, 5355.
[47]
(c) Ma, J.; Rosales, A. R.; Huang, X.; Harms, K.; Riedel, R.; Wiest, O.; Meggers, E. J. Am. Chem. Soc. 2017, 139, 17245.
Outlines

/