Electrochemical-SERS Investigation for Cationic Hydrophilic Effects on the Adsorption Behaviors of Water at Ionic Liquid/Metal Interface
Received date: 2024-09-03
Online published: 2024-11-29
Supported by
National Natural Science Foundation of China(22172109); National Natural Science Foundation of China(21773166)
Ionic liquid has emerged as ideal electrolyte due to its unique properties. However, the previous studies have shown that ionic liquid was very easy to absorb water, and the water in the ionic liquid is trended to enrich at the electrode interface, resulting the significant influence on the performance of ionic liquid. In this paper, an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) combined with probe reaction technique was developed to study adsorption behavior of water at ionic liquid/metal interface. The electrochemical reduction reaction of p-dimercaptoazobenzene (DMAB), which is highly sensitive to interfacial water, was explored as a probe. The Au nanoparticle monolayer film (Au MLF) with good uniformity and reliability was transferred to the surface of glassy carbon electrode as SERS film electrode to improve the reliability of horizontal comparison of spectral result. The interfacial water adsorption behavior in ionic liquid with different cations was studied accordingly. The activity and homogeneity of the SERS substrate have emerged as pivotal in both fundamental researches and practical applications. Herein, Au MLF was successfully fabricated through a self-assembly process at the air-water interface, with the aid of polyvinylpyrrolidone (PVP) as an auxiliary agent. It was found that the reduction efficiency of DMAB increased significantly with the increase of water content. The reduction efficiencies of DMAB in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm]BF4) and 1-butylpyridinium tetrafluoroborate ([BPy]BF4) were almost the same in the solution with the water content less than 1% (volume fraction). It was mainly contributed by the balance in the water adsorption between the anions and cations of bulk phase and the interfacial cations. With the increase of water content to higher than 1%, the reduction efficiency of DMAB in [BMIm]BF4 is higher than that in [BPy]BF4, which is consistent with the hydrophilic ability of cations. The results demonstrate that the water adsorption behavior of the ionic liquid/electrode interface is critically dependent on the hydrophilicity of the ionic liquid cation. More hydrophilicity of [BMIm]+ allowed the water molecules in [BMIm]BF4 to reach at the interface with more molecules than that in the [BPy]BF4 system in the negative potential range. It produced a more significant effect on the water-sensitive interfacial reaction. The present study provides a new approach for the determination of interfacial water and its related behaviors.
Qianjun He , Chenjie Zhang , Minmin Xu , Yaxian Yuan , Jianlin Yao . Electrochemical-SERS Investigation for Cationic Hydrophilic Effects on the Adsorption Behaviors of Water at Ionic Liquid/Metal Interface[J]. Acta Chimica Sinica, 2024 , 82(12) : 1202 -1208 . DOI: 10.6023/A24090260
[1] | Hagiwara, R.; Hirashige, T.; Tsuda, T.; Ito, Y. J. Electrochem. Soc. 2002, 149, 1. |
[2] | Liu, H. T.; Liu, Y.; Li, J. H. Phys. Chem. Chem. Phys. 2010, 12, 1685. |
[3] | Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301. |
[4] | Gu, Q.; Liu, X. X.; Zhou, X. Y.; Li, J.; Lin, X. J.; Ma, Y. W. Acta Chim. Sinica 2024, 82, 449. (in Chinese) |
[4] | (谷琪, 刘夏夏, 周鑫宇, 李江, 林秀婧, 马延文, 化学学报, 2024, 82, 449.) |
[5] | Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156. |
[6] | Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192. |
[7] | Qiao, R. Curr. Opin. Electrochem. 2019, 13, 11. |
[8] | Liu, S.; Tan, Z.; Wu, J.; Mao, B.; Yan, J. Electrochem. Sci. Adv. 2023, 3, e2100199. |
[9] | Zhong, Y. X.; Yan, J. W.; Li, M. G.; Chen, L.; Mao, B. W. Chemelectrochem 2016, 3, 2221. |
[10] | Niu, T. C.; Yuan, Y. X.; Yao, J. L.; Lu, F.; Gu, R. A. Sci. China- Chem. 2011, 54, 200. |
[11] | Doblinger, S.; Donati, T. J.; Silvester, D. S. J. Phys. Chem. C 2020, 124, 20309. |
[12] | Zhang, Y. L.; Ye, R. J.; Henkensmeier, D.; Hempelmann, R.; Chen, R. Y. Electrochim. Acta 2018, 263, 47. |
[13] | Cheng, H. W.; Weiss, H.; Stock, P.; Chen, Y. J.; Reinecke, C. R.; Dienemann, J. N.; Mezger, M.; Valtiner, M. Langmuir 2018, 34, 2637. |
[14] | Tran, C. D.; Lacerda, S. H. D.; Oliveira, D. Appl. Spectrosc. 2003, 57, 152. |
[15] | Freire, M. G.; Carvalho, P. J.; Gardas, R. L.; Marrucho, I. M.; Santos, L.; Coutinho, J. A. P. J. Phys. Chem. B 2008, 112, 1604. |
[16] | Seddon, K. R.; Stark, A.; Torres, M. J. Pure Appl. Chem. 2000, 72, 2275. |
[17] | Freire, M. G.; Santos, L.; Fernandes, A. M.; Coutinho, J. A. P.; Marrucho, I. M. Fluid Phase Equilib. 2007, 261, 449. |
[18] | Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Chem. Soc. Rev. 2008, 37, 1025. |
[19] | Thiel, P. A.; Madey, T. E. Surf. Sci. Rep. 1987, 7, 211. |
[20] | Zhang, C. J.; Zhang, J.; Lin, J. R.; Jin, Q.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2017, 75, 860. (in Chinese) |
[20] | (张晨杰, 张婧, 林洁茹, 金琦, 徐敏敏, 姚建林, 化学学报, 2017, 75, 860.) |
[21] | Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Acta Chim. Sinica 2014, 72, 1125. (in Chinese) |
[21] | (赵刘斌, 黄逸凡, 吴德印, 任斌, 化学学报, 2014, 72, 1125.) |
[22] | Huang, Y. F.; Wu, D. Y.; Zhu, H. P.; Zhao, L. B.; Liu, G. K.; Ren, B.; Tian, Z. Q. Phys. Chem. Chem. Phys. 2012, 14, 8485. |
[23] | Fazio, B.; Triolo, A.; Di Marco, G. J. Raman Spectrosc. 2008, 39, 233. |
[24] | Silvester, D. S.; Jamil, R.; Doblinger, S.; Zhang, Y. X.; Atkin, R.; Li, H. J. Phys. Chem. C 2021, 125, 13707. |
[25] | Cao, Y. Y.; Chen, Y.; Sun, X. F.; Zhang, Z. M.; Mu, T. C. Phys. Chem. Chem. Phys. 2012, 14, 12252. |
[26] | Cao, Y. Y.; Chen, Y.; Lu, L. Y.; Xue, Z. M.; Mu, T. C. Ind. Eng. Chem. Res. 2013, 52, 2073. |
[27] | Bi, S.; Wang, R.; Liu, S.; Yan, J.; Mao, B.; Kornyshev, A. A.; Feng, G. Nat. Commun. 2018, 9, 5222. |
[28] | Frens, G. Nature-Phys. Sci. 1973, 241, 20. |
[29] | Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2008, 39, 1679. |
[30] | Guo, Q. H.; Xu, M. M.; Yuan, Y. X.; Gu, R. A.; Yao, J. L. Langmuir 2016, 32, 4530. |
[31] | Huang, Y. F.; Zhu, H. P.; Liu, G. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. J. Am. Chem. Soc. 2010, 132, 9244. |
[32] | Liu, S.; Peng, J.; Chen, L.; Sebastián, P.; Feliu, J. M.; Yan, J. W.; Mao, B. W. Electrochim. Acta 2019, 309, 11. |
/
〈 |
|
〉 |