Article

Photoluminescence Properties of Li3Cs2Sr2B3P6O24:Eu2+ Narrow-band Blue Phosphor for Wide Color Gamut Backlight Display Applications

  • Mingzhao Li ,
  • Xiang Li ,
  • Hongbo He ,
  • Fang Song ,
  • Zhihua Leng
Expand
  • a School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    b Instrument Analysis Center of Xi’an University of Architecture and Technology, Xi’an 710055, China

Received date: 2024-06-08

  Online published: 2024-12-02

Supported by

National Natural Science Foundation of China(12404461); Natural Science Basic Research Program of Shaanxi Province(2024JC-YBMS-384); Shaanxi Fundamental Science Research Project for Chemistry and Biology(23JHQ077); National innovative training program for college students(202410703079)

Abstract

Developing narrow-band blue phosphor with high quantum efficiency, high thermal stability and high chemical stability is an urgent problem in the field of wide color gamut backlight display technology. However, the latest progress in the field of Eu2+ activated narrow-band blue phosphors is mainly limited to the UCr4C4-type prototype structure. And these phosphors generally exhibit poor chemical stability. Herein, a borophosphate Li3Cs2Sr2-xB3P6O24:xEu2+ (0.005≤x≤0.03, hereinafter abbreviated as LCSBPO:xEu2+) blue phosphor with narrow-band emission (λem=432 nm; full width at half maximum, FWHM=34 nm) was synthesized by high temperature solid phase method. The optimal doping concentration of Eu2+ ions is 0.02. There are two Eu2+ luminescence centers in the LCSBPO:xEu2+ phosphors, i.e. the Eu2+ ions occupied in the Sr(1) and Sr(2) sites, respectively. In addition, the LCSBPO:0.02Eu2+ phosphor also exhibits a high internal/external quantum efficiency (62.9%/16.8%), outstanding thermal stability (86.6%@150 ℃), ultra-high color purity (99%) and excellent chemical stability, whose emission intensity can still remain 93% of that of the pristine sample after being soaking in deionized water for 1 month. In the temperature range of 25~250 ℃, the LCSBPO:0.02Eu2+ phosphor also displays excellent chroma stability (Δx=0.0014, Δy=0.0024; 4×10-4≤ΔC≤9.7×10-3). White light emitting diodes (WLED), which is fabricated by LCSBPO:0.02Eu2+ blue phosphor, commercial β-SiAlON:Eu2+ green phosphor, commercial K2SiF6:Mn4+ red phosphor and 365 nm LED chip, can emit bright white light. And the color gamut area of this WLED in CIE 1931 color coordinates can reach 83% of the color gamut area of the National Television System Committee (NTSC) standard area. These aforesaid findings prove that LCSBPO:0.02Eu2+ narrow-band blue phosphor reported here has a good potential application in WLED technology.

Cite this article

Mingzhao Li , Xiang Li , Hongbo He , Fang Song , Zhihua Leng . Photoluminescence Properties of Li3Cs2Sr2B3P6O24:Eu2+ Narrow-band Blue Phosphor for Wide Color Gamut Backlight Display Applications[J]. Acta Chimica Sinica, 2024 , 82(12) : 1241 -1249 . DOI: 10.6023/A24060188

References

[1]
Chen, H. M.; Wang, L.; Zhang, P.; Bai, X. L.; Zhou, G. J. Acta Chim. Sinica 2023, 81, 771. (in Chinese)
[1]
(陈慧敏, 王龙, 张盼, 白西林, 周国君, 化学学报, 2023, 81, 771).
[2]
Zhang, J. R.; Huang, D. C.; Huang, C. C.; Liang, S. S.; Zhu, H. M. Acta Chim. Sinica 2022, 80, 453. (in Chinese)
[2]
(张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼, 化学学报, 2022, 80, 453.)
[3]
Liang, P.; Zhang, H. S.; Huang, H. S.; Li, S. Y.; Zhang, X. T.; Wang, Y.; Li, L. Q.; Liu, Z. H. Acta Chim. Sinica 2023, 81, 371. (in Chinese)
[3]
(梁攀, 张宏淑, 黄宏升, 李飒英, 张笑恬, 王英, 李连庆, 刘志宏, 化学学报, 2023, 81, 371.)
[4]
Zhao, M.; Zhang, Q. Y.; Xia, Z. G. Mater. Today 2020, 40, 246.
[5]
Wang, S. W.; Wu, H. Y.; Fan, Y. F.; Wang, Q.; Tan, T.; Zhang, S.; Li, D.; Jiang, L. H.; Li, C. Y.; Zhang, H. J. Chem. Eng. J. 2022, 432, 134265.
[6]
Qiao, J. W.; Zhou, Y. Y.; Molokeev, M. S.; Zhang, Q. Y.; Xia, Z. G. Laser Photonics Rev. 2021, 15, 2100392.
[7]
Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Hen?, A.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Nature Mater. 2014, 13, 891.
[8]
Dutzler, D.; Seibald, M.; Baumann, D.; Huppertz, H. Angew. Chem. Int. Ed. 2018, 57, 13676.
[9]
Leng, Z. H.; Zhang, D.; Bai, H.; He, H. B.; Qing, Q.; Zhao, J.; Tang, Z. B. J. Mater. Chem. C 2021, 9, 13722.
[10]
Tang, Z. B.; Du, F.; Leng, Z. H.; Xie, H. D.; Li, Y. Y.; Zhao, L. J. Rare Earth. 2023, 41, 1876.
[11]
Zhao, M.; Liao, H. X.; Ning, L. X.; Zhang, Q. Y.; Liu, Q. L.; Xia, Z. G. Adv. Mater. 2018, 30, 1802489.
[12]
Liao, M.; Wang, Q.; Lin, Q. M.; Xiong, M. X.; Zhang, X.; Dong, H. F.; Lin, Z. P.; Wen, M. R.; Zhu, D. Y.; Mu, Z. F.; Wu, F. G. Adv. Opt. Mater. 2021, 9, 2100465.
[13]
Liao, H. X.; Ming, Z.; Zhou, Y. Y.; Molokeev, M. S.; Liu, Q. L.; Zhang, Q. Y.; Xia, Z. G. Adv. Funct. Mater. 2019, 29, 1901988.
[14]
Piao, S. Q.; Wang, Y. C.; Zhu, G.; Zhang, J. S.; Zhang, X. Z.; Wu, D. Y.; Cao, Y. Z.; Li, X. P.; Chen, B. J. J. Mater. Chem. 2021, 9, 14777.
[15]
Wu, Q. S.; Li, Y. Y.; Wang, Y. J.; Liu, H.; Ye, S. S.; Zhao, L.; Ding, J. Y.; Zhou, J. C. Chem. Eng. J. 2020, 401, 126130.
[16]
Zhuang, J. Q.; Xia, Z. G.; Liu, H. K.; Zhang, Z. P.; Liao, L. B. Appl. Surf. Sci. 2011, 257, 4350.
[17]
Leng, Z. H.; Bai, H.; Qing, Q.; He, H. B.; Hou, J. Y.; Li, B. Y.; Tang, Z. B.; Song, F.; Wu, H. Y. ACS Sustainable Chem. Eng. 2022, 10, 10966.
[18]
Zhang, L. J.; Li, Y. Y.; Liu, P. F.; Chen, L. Dalton T. 2016, 45, 7124.
[19]
Song, Z.; Lü, W.; Kang, X. J.; Zhu, Z. N.; Zeng, Q. J. Lumin. 2024, 265, 120255.
[20]
Suo, H. X.; Song, Z.; Kang, X. J.; Li, X. M.; Zhou, F.; Lyu, W. Chin. J. Lumin. 2023, 44, 837. (in Chinese)
[20]
(索慧娴, 宋志, 康晓娇, 李昕明, 周飞, 吕伟, 发光学报, 2023, 44, 837.)
[21]
Zhou, Y. P.; Hu, Y. S.; Liu, R. H.; Liu, Y. H.; Zhuang, W. D.; Cao, M.; Gao, T. Y.; Tian, J. H.; Li, Y. F.; Chen, G. T. J. Rare Earth. 2021, 39, 627.
[22]
Zhu, Y. L.; Liang, Y. J.; Liu, S. Q.; Li, H. R.; Chen, J. H. Adv. Opt. Mater. 2019, 7, 1801419.
[23]
Bai, H.; Wu, G. D.; Qing, Q.; Hou, J. Y.; Liu, J. H.; Song, F.; Tang, Z. B.; Leng, Z. H. J. Lumin. 2022, 252, 119346.
[24]
Leng, Z. H.; Li, R. F.; Li, L. P.; Xue, D. K.; Zhang, D.; Li, G. S.; Chen, X. Y.; Zhang, Y. ACS Appl. Mater. Interfaces 2018, 10, 33322.
[25]
Zhang, H. Z.; Li, H.; Liu, C. L.; Jiang, H. M.; Li, Y. X.; He, J. Y.; Wang, R.; Hu, W. B.; Zhu, J. Chem. Eng. J. 2024, 490, 151727.
[26]
Wu, G. D.; Xue, J. Q.; Li, X. Y.; Bi, Q.; Sheng, M. J.; Leng, Z. H. Ceram. Int. 2023, 49, 10615.
[27]
Zhao, M.; Cao, K.; Liu, M. J.; Zhang, J.; Chen, R.; Zhang, Q. Y.; Xia, Z. G. Angew. Chem. Int. Ed. 2020, 59, 12938.
[28]
Qiang, J. W.; Wang, L.; Wang, T. M.; Yu, Y.; Deng, D. S.; Wu, C. X.; Liao, S.; Li, S. X. Ceram. Int. 2022, 48, 17253.
[29]
Huang, D. C.; Zhu, H. M.; Deng, Z. H.; Zou, Q. L.; Lu, H. Y.; Yi, X. D.; Guo, W.; Lu, C. Z.; Chen, X. Y. Angew. Chem. Int. Ed. 2019, 58, 3843.
[30]
Zhang, Z. J.; Devakumar, B.; Wang, S. Y.; Sun, L. L.; Ma, N.; Li, W.; Huang, X. Y. Mater. Today Chem. 2021, 20, 100471.
Outlines

/