Original article

Density Functional Theory Study of Hexagonal Boron Nitride Oxidation Mode

  • Ying Ma ,
  • Weixi Chen ,
  • Yuchen Liu ,
  • Ziyi Liu ,
  • Tao Wu ,
  • An-Hui Lu ,
  • Dongqi Wang
Expand
  • State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2024-10-27

  Online published: 2024-12-19

Supported by

National Natural Science Foundation of China(21733002); National Natural Science Foundation of China(22209018)

Abstract

Propylene is one of the important raw chemical materials for producing polypropylene, epichlorohydrin and other chemical products. Propylene is traditionally produced by petroleum steam cracking, which is energy demanding and suffers from coking. In contrast, boron-based oxidative dehydrogenation (ODH) of light alkanes offers an alternative strategy with low energy cost and free of coking, and is growing as a promising protocol in the value-added conversion of shale gas and natural gas. Owing to the lack of molecular level of knowledge of the reaction system, there are many issues related to the underlying mechanism remain in debate, and the extensive mechanistic study relies on the choice of catalyst model to be used in computational studies and in interpreting experimental phenomena. In this work, concerning the importance of oxygenated boron species in the ODH of light alkanes, the oxidation modes of hexagonal boron nitride (h-BN) were evaluated by means of density functional theory (DFT) method to provide insights on the speciation of oxidized h-BN under ODH conditions, which is vital to understand ODH reaction catalyzed by boron-containing materials and to determine sensible choices of oxygenated models. Based on previous investigations, in which oxygenated boron species, e.g. >BOH, >BOB<, >BOOB<, were reported to play crucial role in forming active sites, various oxidation models of h-BN were prepared, differing from each other in the type of oxo species (mono-oxo vs peroxo), the position to be oxidized (B or N sites at zigzag or armchair edge), and the quantity of oxygenated groups (the extent of oxidization). The stability of these models were studied from the thermodynamic perspective, and the 11B nuclear magnetic resonance (11B NMR) and harmonic vibrational modes of oxygenated boron species were calculated. The results show that zigzag-edges of h-BN is the main region to accommodate oxygenated boron species under ODH conditions. In order to reproduce the vibrational frequencies of oxygenated boron species measured in experimental studies, we also proposed a scaling factor of 0.9658 fitted based on the calculated harmonic vibrational frequencies of a set of boron-containing molecules. This work provides a strategy for simplification of boron-based catalysis in the study of their structures and properties and their roles in catalytic reactions conducted under oxidative conditions.

Cite this article

Ying Ma , Weixi Chen , Yuchen Liu , Ziyi Liu , Tao Wu , An-Hui Lu , Dongqi Wang . Density Functional Theory Study of Hexagonal Boron Nitride Oxidation Mode[J]. Acta Chimica Sinica, 2025 , 83(1) : 52 -59 . DOI: 10.6023/A24100324

References

[1]
Sattler, J.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Chem. Rev. 2014, 114, 10613.
[2]
Li, C.-Y.; Wang, G.-W. Chem. Soc. Rev. 2021, 50, 4359.
[3]
Cavani, F.; Ballarini, N.; Cericola, A. Catal. Today 2007, 127, 113.
[4]
Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P. Nat. Mater. 2009, 8, 213.
[5]
Sheng, J.; Yan, B.; Lu, W.-D.; Qiu, B.; Gao, X.-Q.; Wang, D.-Q.; Lu, A.-H. Chem. Soc. Rev. 2021, 50, 1438.
[6]
Klisinska, A.; Samson, K.; Gressel, I.; Grzybowska, B. Appl. Catal. A-Gen. 2006, 309, 10.
[7]
Petit, S.; Gode, T.; Thomas, C.; Dzwigaj, S.; Millot, Y.; Brouri, D.; Krafft, J. M.; Rousse, G.; Laberty-Robert, C.; Costentin, G. Phys. Chem. Chem. Phys. 2017, 19, 9630.
[8]
Zhou, H.; Yi, X.-F.; Hui, Y.; Wang, L.; Chen, W.; Qin, Y.-C.; Wang, M.; Ma, J.-B.; Chu, X.-F.; Wang, Y.-Q.; Hong, X.; Chen, Z.-F.; Meng, X.-J.; Wang, H.; Zhu, Q.-Y.; Song, L.-J.; Zheng, A.-M.; Xiao, F.-S. Science 2021, 372, 76.
[9]
Wang, T.-C.; Yin, J.-L.; Guo, X.-J.; Chen, Y.; Lang, W.-Z.; Guo, Y.-J. J. Catal. 2021, 393, 149.
[10]
Grant, J. T.; McDermott, W. P.; Venegas, J. M.; Bur, S. P.; Micka, J.; Phivilay, S. P.; Carrero, C. A.; Hermans, I. ChemCatChem 2017, 9, 3623.
[11]
Li, P.; Zheng, Y.-N.; Liu, Z.-K.; Lu, A.-H. Acta Phys.-Chim. Sin. 2024, 2406012 (in Chinese).
[11]
( 李佩, 郑跃楠, 刘占凯, 陆安慧, 物理化学学报, 2024, 2406012.)
[12]
Li, S.; Wang, Y. Chem. Propellants Polym. Mater. 2020, 18, 1 (in Chinese).
[12]
( 李师, 王毅, 化学推进剂与高分子材料, 2020, 18, 1.)
[13]
Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; McDermott, W. P.; Chieregato, A.; Hermans, I. Science 2016, 354, 1570.
[14]
Shi, L.; Wang, D.-Q.; Song, W.; Sha, D.; Zhang, W.-P.; Lu, A.-H. ChemCatChem 2017, 9, 1788.
[15]
Shi, L.; Wang, D.-Q.; Lu, A.-H. Chinese J. Catal. 2018, 39, 908.
[16]
Zhou, Y.-L.; Lin, J.; Li, L.; Pan, X.-L.; Sun, X.-C.; Wang, X.-D. J. Catal. 2018, 365, 14.
[17]
Lu, W.-D.; Wang, D.-Q.; Zhao, Z.; Song, W.; Li, W.-C.; Lu, A.-H. ACS Catal. 2019, 9, 8263.
[18]
Liu, Y.-C.; Liu, Z.-Y.; Wang, D.-Q.; Lu, A.-H. J. Phys. Chem. C 2022, 126, 21263.
[19]
Liu, Z.-Y.; Lu, W.-D.; Wang, D.-Q.; Lu, A.-H. J. Phys. Chem. C 2021, 125, 24930.
[20]
Liu, Z.-Y.; Xu, D.-T.; Xia, M.-R.; Lu, W.-D.; Lu, A.-H.; Wang, D.-Q. J. Phys. Chem. Lett. 2021, 12, 8770.
[21]
Love, A. M.; Thomas, B.; Specht, S. E.; Hanrahan, M. P.; Venegas, J. M.; Burt, S. P.; Grant, J. T.; Cendejas, M. C.; McDermott, W. P.; Rossini, A. J.; Hermans, I. J. Am. Chem. Soc. 2019, 141, 182.
[22]
Venegas, J. M.; Zhang, Z.-S.; Agbi, T. O.; McDermott, W. P.; Alexandrova, A.; Hermans, I. Angew. Chem. Int. Ed. 2020, 59, 16527.
[23]
Lu, W.-D.; Gao, X.-Q.; Wang, Q.-G.; Li, W.-C.; Zhao, Z.-C.; Wang, D.-Q.; Lu, A.-H. Chinese J. Catal. 2020, 41, 1837.
[24]
Li, P.; Zhang, X.; Wang, J.; Xue, Y.; Yao, Y.; Chai, S.; Zhou, B.; Wang, X.; Zheng, N.; Yao, J. J. Am. Chem. Soc. 2022, 144, 5930.
[25]
Love, A. M.; Cendejas, M. C.; Thomas, B.; McDermott, W. P.; Uchupalanun, P.; Kruszynski, C.; Burt, S. P.; Agbi, T.; Rossini, A. J.; Hermans, I. J. Phys. Chem. C 2019, 123, 27000.
[26]
Huang, R.; Zhang, B.-S.; Wang, J.; Wu, K.-H.; Shi, W.; Zhang, Y.-J.; Liu, Y.-F.; Zheng, A.-M.; Schlogl, R.; Su, D.-S. ChemCatChem 2017, 9, 3293.
[27]
Yan, B.; Li, W.-C.; Lu, A.-H. J. Catal. 2019, 369, 296.
[28]
Liu, Y.-C.; Liu, Z.-Y.; Lu, W.-D.; Wang, D.-Q.; Lu, A.-H. J. Phys. Chem. Lett. 2022, 13, 11729.
[29]
Liu, Z.-K.; Yan, B.; Meng, S.-Y.; Liu, R.; Lu, W.-D.; Sheng, J.; Yi, Y.-H.; Lu, A.-H. Angew. Chem. Int. Ed. 2021, 60, 19691.
[30]
Zhang, X.-Y.; You, R.; Wei, Z.-Y.; Jiang, X.; Yang, J.-Z.; Pan, Y.; Wu, P.-W.; Jia, Q.-D.; Bao, Z.-H.; Bai, L.; Jin, M.-Z.; Sumpter, B.; Fung, V.; Huang, W.-X.; Wu, Z. Angew. Chem. Int. Ed. 2020, 59, 8042.
[31]
Torii, S.; Jimura, K.; Hayashi, S.; Kikuchi, R.; Takagaki, A. J. Catal. 2017, 335, 176.
[32]
Gao, X.; Zhu, L.; Yang, F.; Zhang, L.; Xu, W.; Zhou, X.; Huang, Y.; Song, H.; Lin, L.; Wen, X.; Ma, D.; Yao, S. Nat. Commun. 2023, 14, 1478.
[33]
Song, Y.; Duan, X.; Jiang, Y.-N.; Ma, Y. J. Phys. Chem. Lett. 2024, 15, 6890.
[34]
Lee, C. T.; Yang, W.-T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
[35]
Becke, A. D. Phys. Rev. A 1988, 38, 3098.
[36]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
[37]
Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
[38]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C01, 2010.
Outlines

/