Article

Preparation and Supercapacitance Properties of High Loading ZnO@C@NiCo-LDH Heterostructure Electrodes

  • Hao Tong ,
  • Yuxue Deng ,
  • Lei Li ,
  • Zheng Tao ,
  • Laifa Shen ,
  • Xiaogang Zhang
Expand
  • College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Jiang Su Key Laboratory of Materials and Technologies for Energy Storage, Nanjing 211106, China

Received date: 2024-11-26

  Online published: 2025-01-14

Supported by

National Natural Science Foundation of China(22075142)

Abstract

There are still many challenges in the transformation of supercapacitors from laboratory research to industrial application, especially the low-mass load electrodes used in laboratories cannot meet the needs of commercial applications. Herein, we present a highly loaded nickel-cobalt double hydroxide-based (NiCo-LDH) supercapacitor. Three-dimensional ZnO@C nanorod scaffolds with high conductivity were introduced, and ZnO@C@NiCo-LDH heterostructure materials on carbon cloth were prepared by solvothermal, high-temperature annealing, electrochemical deposition and other methods, achieving loading up to 11.0 mg•cm−2. The typical synthesis process is as follows. Firstly, the neatly arranged ZnO nanorods were grown on the carbon cloth fiber by seed growth method. Then, ZIF-8 nanoparticle coatings were grown in situ on zinc oxide nanorods through etching and recombination in a solution containing 2-methylimidazole. Subsequently, we obtained ZIF-8-derived carbon-coated ZnO nanorods by carbonizing ZnO@ZIF-8 heteronanostructures in nitrogen. During the carbonization process, the ZIF-8 shell is transformed into a carbon layer containing zinc oxide nanoparticles. Finally, NiCo-LDH nanosheets were deposited on the ZnO@C framework by electrochemical cyclic voltammetry. The conductive ZnO@C nanorods can avoid the agglomeration of NiCo-LDH nanosheets and promote the transport of electrons. The outer NiCo-LDH nanosheets with high capacity can continue to improve the electrolyte ion contact points on the electrode surface, further improving the specific capacity of the material. This heterostructure electrode utilizes the synergistic effect of the two to greatly improve the charge storage capacity and exhibits excellent electrochemical performance. The results show that the assembled asymmetric supercapacitor ZnO@C@NiCo-LDH//AC achieves a high energy density of 0.93 mWh•cm−2 at a power density of 15 mW•cm−2. After 5000 cycles at a current density of 10 mA•cm−2, the capacity retention rate is still 93.6%, demonstrating excellent stability. This work provides a new idea for developing new high-mass load electrodes.

Cite this article

Hao Tong , Yuxue Deng , Lei Li , Zheng Tao , Laifa Shen , Xiaogang Zhang . Preparation and Supercapacitance Properties of High Loading ZnO@C@NiCo-LDH Heterostructure Electrodes[J]. Acta Chimica Sinica, 2025 , 83(2) : 110 -118 . DOI: 10.6023/A24110358

References

[1]
Lin, Z.; Goikolea, E.; Balducci, A.; Naoi, K.; Taberna, P. L.; Salanne, M.; Yushin, G.; Simon, P. Mater. Today 2018, 21, 419.
[2]
Xu, T. Acta Chim. Sinica 2024, 82, 1022 (in Chinese).
[2]
(许廷强, 化学学报, 2024, 82, 1022.)
[3]
Ji, H.; Xie, C.; Zhang, Q.; Li, Y.; Li, H.; Wang, H. Acta Chim. Sinica 2023, 81, 29 (in Chinese).
[3]
(姬慧敏, 谢春霖, 张旗, 李熠鑫, 李欢欢, 王海燕, 化学学报, 2023, 81, 29.)
[4]
Guo, W.; Yu, C.; Li, S.; Song, X.; Huang, H.; Han, X.; Wang, Z.; Liu, Z.; Yu, J.; Tan, X.; Qiu, J. Adv. Mater. 2019, 31, 1901241.
[5]
Huang, X.; Chu, B.; Han, B.; Wu, Q.; Yang, T.; Xu, X.; Wang, F.; Li, B. Small 2024, 20, 2401315.
[6]
Liu, J.; Chen, G.; Chen, Y.; Jiang, J.; Xiao, X.; Wu, Q.; Yang, L.; Wang, Z.; Hu, Z. Acta Chim. Sinica 2023, 81, 709 (in Chinese).
[6]
(刘佳, 陈光海, 陈轶群, 江杰涛, 肖霄, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2023, 81, 709.)
[7]
Hu, W.; Chen, L.; Geng, B.; Du, M.; Shan, G.; Song, Y.; Wu, Z.; Zheng, Q. ACS Appl. Energy Mater. 2023, 6, 2781.
[8]
Schütter, C.; Pohlmann, S.; Balducci, A. Adv. Energy Mater. 2019, 9, 1900334.
[9]
El-Kady, M. F.; Shao, Y.; Kaner, R. B. Nat. Rev. Mater. 2016, 1, 1.
[10]
Huang, Z. H.; Song, Y.; Feng, D. Y.; Sun, Z.; Sun, X.; Liu, X. X. ACS Nano 2018, 12, 3557.
[11]
Xiong, G.; He, P.; Lyu, Z.; Chen, T.; Huang, B.; Chen, L.; Fisher, T. S. Nat. Commun. 2018, 9, 790.
[12]
Syed, J. A.; Ma, J.; Zhu, B.; Tang, S.; Meng, X. Adv. Energy Mater. 2017, 7, 1701228.
[13]
Theerthagiri, J.; Salla, S.; Senthil, R. A.; Nithyadharseni, P.; Madankumar, A.; Arunachalam, P.; Maiyalagan, T.; Kim, H. S. Nanotechnology 2019, 30, 392001.
[14]
Ahmad, R.; Tripathy, N.; Hahn, Y. B. Chem. Commun. 2014, 50, 1890.
[15]
Weintraub, B.; Zhou, Z.; Li, Y.; Deng, Y. Nanoscale 2010, 2, 1573.
[16]
Samuel, E.; Joshi, B.; Kim, M. W.; Kim, Y. I.; Swihart, M. T.; Yoon, S. S. Chem. Eng. J. 2019, 371, 657.
[17]
Peng, H.; Wang, X.; Liu, Z.; Lei, H.; Cui, S.; Xie, X.; Hu, Y.; Ma, G. ACS Appl. Mater. Interfaces 2023, 15, 4071.
[18]
Kumar, R.; Singh, R. K.; Vaz, A. R.; Moshkalev, S. A. RSC Adv. 2015, 5, 67988.
[19]
Li, Y.; Liu, X. Mater. Chem. Phys. 2014, 148, 380.
[20]
Samuel, E.; Joshi, B.; Kim, Y. I.; Aldalbahi, A.; Rahaman, M.; Yoon, S. S. ACS Sustainable Chem. Eng. 2020, 8, 3697.
[21]
Kim, J. J.; Shuji, K.; Zheng, J.; He, X.; Sajjad, A.; Zhang, H.; Su, H.; Choy, W. C. Nat. Commun. 2024, 15, 2070.
[22]
Geng, Z.; Cui, Z.; Liu, Y.; Zhang, Y.; Wan, L.; Gao, N.; Liu, J.; Li, H. Diamond Relat. Mater. 2023, 140, 110527.
[23]
Rabani, I.; Tahir, M. S.; Nisar, S.; Parrilla, M.; Truong, H. B.; Kim, M.; Seo, Y. S. Electrochim. Acta 2024, 475, 143532.
[24]
Yan, X.; Hu, Q. T.; Wang, G.; Zhang, W. D.; Liu, J.; Li, T.; Gu, Z. G. Int. J. Hydrogen Energy 2020, 45, 19206.
[25]
Wang, J.; Luo, Y.; Ling, L.; Wang, X.; Cui, S.; Li, Z.; Jiao, Z.; Cheng, L. CrystEngComm 2022, 24, 4962.
[26]
Silva, R. L. D. S.; Franco Jr., A. Mater. Sci. Semicond. Process. 2020, 119, 105227.
[27]
Zhang, X.; Lu, W.; Tian, Y.; Yang, S.; Zhang, Q.; Lei, D.; Zhao, Y. J. Colloid Interface Sci. 2022, 606, 1120.
[28]
Samuel, E.; Londhe, P. U.; Joshi, B.; Kim, M. W.; Kim, K.; Swihart, M. T.; Chaure, N. B.; Yoon, S. S. J. Alloys Compd. 2018, 741, 781.
[29]
Zheng, Y.; Xu, J.; Zhang, Y.; Yang, X.; Zhang, Y.; Shang, Y. New J. Chem. 2018, 42, 150.
[30]
Shen, L.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X.; Lou, X. W. Nat. Commun. 2015, 6, 6694.
[31]
He, Y.; Zhang, X.; Wang, J.; Sui, Y.; Qi, J.; Chen, Z.; Zhang, P.; Chen, C.; Liu, W. Adv. Mater. Interfaces 2021, 8, 2100642.
[32]
An, C. J. Adv. Mater. Interfaces 2023, 10, 2201993.
[33]
Nagaraju, G.; Chandra Sekhar, S.; Krishna Bharat, L.; Yu, J. S. ACS nano 2017, 11, 10860.
[34]
Shi, D.; Zhang, L.; Yin, X.; Huang, T. J.; Gong, H. J. Mater. Chem. A 2016, 4, 12144.
[35]
Kong, W.; Lu, C.; Zhang, W.; Pu, J.; Wang, Z. J. Mater. Chem. A 2015, 3, 12452.
[36]
Nagaraju, G.; Sekhar, S. C.; Ramulu, B.; Yu, J. S. Small 2019, 15, 1805418.
[37]
Pan, M.; Zeng, W.; Quan, H.; Cui, J.; Guo, Y.; Wang, Y.; Chen, D. Electrochim. Acta 2020, 357, 136886.
Outlines

/