Solvent-regulated Synthesis of Copper Nanocluster Assemblies and Its Application in Light-emitting Diodes
Received date: 2024-11-16
Online published: 2025-01-17
Supported by
National Natural Science Foundation of China(22202085); National Natural Science Foundation of China(22004050); National Natural Science Foundation of China(62375112)
Photoluminescent copper nanoclusters have broad application prospects in lighting and display. However, the difficulty of photoluminescence wavelength regulation greatly limits its practical application. Now, more and more studies show that the photoluminescence of metal nanoclusters cannot be simply attributed to the quantum confinement effect of the metal core, metal-metal, metal-ligand and ligand-ligand interactions play a pivotal role in the emission process. Achieving the effective regulation of these weak interactions in metal nanoclusters is the current research focus in this field. Self-assembly is an effective strategy to regulate these weak interactions in metal nanoclusters. The variation of the spatial assembly structure of metal nanoclusters will affect the charge and energy transfer process, and then affect the photoelectric properties of metal nanoclusters. Although many strategies have been proposed to regulate the assembly structure of metal nanoclusters, most of the proposed strategies need to be carried out under heating conditions, which is not conducive to the large-scale production of metal nanocluster assemblies and limits its practical application. In this paper, copper nanocluster assemblies with yellow and blue emission have been successfully synthesized by a solvent-regulated strategy at room temperature. Different solvent environments lead to different assembly modes of copper nanoclusters, and finally two typical assembly structures of nanosheet and nanorod are formed. In a high boiling solvent, such as dibenzyl ether, the solubility and fluidity of copper clusters are poor, which is conducive to the formation of loose nanosheet assembly structure. In contrast, in a low boiling solvent, such as n-hexane, the solubility and fluidity of copper clusters are better and the clusters tend to form a dense nanorod assembly structure. The spacing of clusters in the assembly plays a pivotal role in its photoluminescence performance. Compared with the single-layer nanosheet structure, the nanorod structure adds the additional interlayer interaction. This results in additional Cu(I)…Cu(I) interaction and the increasing of spacing between adjacent sulfhydryl ligands on the cluster surface. Finally, the emission wavelength of copper nanoclusters blue shifted from ca. 550 nm to ca. 490 nm. This solvent-regulated synthesis strategy is simple, easy to operate and short in time consuming, which is conducive to the large-scale synthesis of copper nanoclusters. In addition, light-emitting diodes (LEDs) with different emission colors based on the synthesized metal nanocluster assemblies were successfully prepared.
Taiqun Yang , Cheng Ye , Shen Zhou , Siqi Ding , Penghe Mi , Tianhui Wang , Lei Li , Guoqing Chen . Solvent-regulated Synthesis of Copper Nanocluster Assemblies and Its Application in Light-emitting Diodes[J]. Acta Chimica Sinica, 2025 , 83(2) : 87 -92 . DOI: 10.6023/A24110348
[1] | Diez, I.; Ras, R. H. Nanoscale 2011, 3, 1963. |
[2] | Yu, H.; Rao, B.; Jiang, W.; Yang, S.; Zhu, M. Coord. Chem. Rev. 2019, 378, 595. |
[3] | Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. |
[4] | Tao, Y.; Li, M.; Ren, J.; Qu, X. Chem. Soc. Rev. 2015, 44, 8636. |
[5] | Tan, K.; Ma, H.; Mu, X.; Wang, Z.; Wang, Q.; Wang, H.; Zhang, X. D. Anal. Bioanal. Chem. 2024, 416, 5871. |
[6] | Lin, H.; Song, X.; Chai, O. J. H.; Yao, Q.; Yang, H.; Xie, J. Adv. Mater. 2024, 36, e2401002. |
[7] | Dai, R.; Zhang, Y.; Huang, K.; Peng, X. Anal. Methods 2022, 14, 2820. |
[8] | Yang, T. Q.; Peng, B.; Shan, B. Q.; Zong, Y. X.; Jiang, J. G.; Wu, P.; Zhang, K. Nanomaterials (Basel) 2020, 10, 261. |
[9] | Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363 (in Chinese). |
[9] | (高冠斌, 龚德君, 张明曦, 孙涛垒, 化学学报, 2016, 74, 363.) |
[10] | Goswami, N.; Yao, Q.; Luo, Z.; Li, J.; Chen, T.; Xie, J. J. Phys. Chem. Lett. 2016, 7, 962. |
[11] | Shi, Y.; Ma, J.; Feng, A.; Wang, Z.; Rogach, A. L. Aggregate 2021, 2, e112. |
[12] | Liu, Z.; Luo, L.; Jin, R. Adv. Mater. 2024, 36, e2309073. |
[13] | Wang, Z.; Chen, B.; Susha, A. S.; Wang, W.; Reckmeier, C. J.; Chen, R.; Zhong, H.; Rogach, A. L. Adv. Sci. 2016, 3, 1600182. |
[14] | Wu, Z.; Liu, J.; Gao, Y.; Liu, H.; Li, T.; Zou, H.; Wang, Z.; Zhang, K.; Wang, Y.; Zhang, H.; Yang, B. J. Am. Chem. Soc. 2015, 137, 12906. |
[15] | Xu, D.; Yang, Y.; Fan, W.; He, Z.; Zou, J.; Feng, L.; Li, M.-B.; Wu, Z. Acta Chim. Sinica 2022, 80, 1 (in Chinese). |
[15] | (许道兰, 杨颖, 范文涛, 何宗兵, 邹家丰, 冯磊, 李漫波, 伍志鲲, 化学学报 , 80, 1.) |
[16] | Peng, B.; Zhou, J. F.; Ding, M.; Shan, B. Q.; Chen, T.; Zhang, K. Sci. Technol. Adv. Mater. 2023, 24, 2210723. |
[17] | Yang, T.; Li, L.; Zhou, J.; Shan, B.; Gao, H.; Zhu, C.; Chen, G.; Zhang, K. J. Chem. Phys. 2023, 159, 234702. |
[18] | Yang, T.; Dai, S.; Tan, H.; Zong, Y.; Liu, Y.; Chen, J.; Zhang, K.; Wu, P.; Zhang, S.; Xu, J.; Tian, Y. J. Phys. Chem. C 2019, 123, 18638. |
[19] | Sahoo, K.; Chakraborty, I. Nanoscale 2023, 15, 3120. |
[20] | Zhang, B.; Chen, J.; Cao, Y.; Chai, O. J. H.; Xie, J. Small 2021, 17, e2004381. |
[21] | Qian, J.; Yang, Z.; Lyu, J.; Yao, Q.; Xie, J. Precis. Chem. 2024, 2, 495. |
[22] | Ai, L.; Liu, Z.; Zhou, D.; Liu, J.; Zou, H.; Wu, Z.; Liu, Y.; Zhang, H.; Yang, B. Nanoscale 2017, 9, 18845. |
[23] | Ai, L.; Jiang, W.; Liu, Z.; Liu, J.; Gao, Y.; Zou, H.; Wu, Z.; Wang, Z.; Liu, Y.; Zhang, H.; Yang, B. Nanoscale 2017, 9, 12618. |
[24] | Liu, J.; Wu, Z.; Tian, Y.; Li, Y.; Ai, L.; Li, T.; Zou, H.; Liu, Y.; Zhang, X.; Zhang, H.; Yang, B. ACS Appl. Mater. Interfaces 2017, 9, 24899. |
[25] | Liu, Y.; Yao, D.; Zhang, H. ACS Appl. Mater. Interfaces 2017, 10, 12071. |
[26] | Ai, L.; Li, J.; Tang, M.; Chen, H.; Meng, H. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 729, 012015. |
[27] | Wu, Z.; Liu, H.; Li, T.; Liu, J.; Yin, J.; Mohammed, O. F.; Bakr, O. M.; Liu, Y.; Yang, B.; Zhang, H. J. Am. Chem. Soc. 2017, 139, 4318. |
[28] | Chen, Y.; Yang, T.; Pan, H.; Yuan, Y.; Chen, L.; Liu, M.; Zhang, K.; Zhang, S.; Wu, P.; Xu, J. J. Am. Chem. Soc. 2014, 136, 1686. |
[29] | Yang, T.; Shan, B.; Huang, F.; Yang, S.; Peng, B.; Yuan, E.; Wu, P.; Zhang, K. Commun. Chem. 2019, 2, 132. |
[30] | Yang, T.; Dai, S.; Yang, S.; Chen, L.; Liu, P.; Dong, K.; Zhou, J.; Chen, Y.; Pan, H.; Zhang, S.; Chen, J.; Zhang, K.; Wu, P.; Xu, J. J. Phys. Chem. Lett. 2017, 8, 3980. |
[31] | Yang, T.; Zhou, J.; Shan, B.; Peng, B.; Li, L.; Gao, H.; Chen, G.; Zhang, K. ACS Appl. Nano Mater. 2023, 6, 17924. |
[32] | Yang, T.; Zhou, J.; Shan, B.; Li, L.; Zhu, C.; Ma, C.; Gao, H.; Chen, G.; Zhang, K.; Wu, P. Macromol. Rapid Commun. 2022, 43, e2100720. |
/
〈 |
|
〉 |