Design and Biological Application of Macrocyclic Host Molecules-based Nucleic Acid Probes
Received date: 2024-11-26
Online published: 2025-02-05
Supported by
National Natural Science Foundations of China(82373630); National Natural Science Foundations of China(82073606)
The rapid development of macrocyclic host molecules, with their unique cavity structures of various sizes, allows them to serve as molecular recognition sites for recognition and functional regulation mediated by host-guest interactions. Additionally, macrocyclic host molecules possess characteristics such as fluorescence enhancement, high biocompatibility, and ease of derivatization, which have led to their widespread application across various fields. However, macrocyclic host molecules inherently lack targeting ability, making specific detection of targets in complex biological environments challenging. The derivatization of macrocyclic molecule compounds can be used to adjust their recognition, physical, and biological properties on one hand; on the other hand, they can form macrocyclic polymers through covalent linkages. Moreover, they can spontaneously form supramolecular self-assemblies through non-covalent interactions. Leveraging these characteristics of macrocyclic host compounds, and combining the advantages of nucleic acid probes that can specifically recognize biological targets, the design and preparation of new nucleic acid probes based on macrocyclic host molecules often exhibit superior performance in terms of high sensitivity, high specificity, and resistance to interference from complex environments. This article systematically reviews the design strategies of nucleic acid probes based on both monomeric and aggregated forms of macrocyclic host molecules, which can be applied to the detection of genes, other targets, as well as cellular and in vivo imaging. Especially, nucleic acid probes based on monomeric macrocyclic host molecules, such as molecular beacons, aptamer probes, and adjacent nucleic acid probes, can target different targets and show broad application potential. Finally, the article looks forward to the challenges and future development directions in this field, suggesting that by integrating multiple responsive elements, the intelligence and logic of nucleic acid probes based on macrocyclic host molecules can be enhanced, and the construction of smart responsive materials can better adapt to the complexity of the in vivo environment.
Yujing Guo , Mengpan Zhang , Zitong Gong , Yunli Zhao , Kangqi Shi , Leiliang He . Design and Biological Application of Macrocyclic Host Molecules-based Nucleic Acid Probes[J]. Acta Chimica Sinica, 2025 , 83(3) : 309 -318 . DOI: 10.6023/A24110357
[1] | Amabilino, D. B.; Gale, P. A. Chem. Soc. Rev. 2017, 46, 2376. |
[2] | Liu, Z.-C.; Nalluri, S. K. M.; Stoddart, J. F. Chem. Soc. Rev. 2017, 46, 2459. |
[3] | You, L.; Zha, D.-J.; Anslyn, E. V. Chem. Rev. 2015, 115, 7840. |
[4] | Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659 (in Chinese). |
[4] | (焦阳, 张希, 化学学报, 2018, 76, 659.) |
[5] | Lou, X.-Y.; Song, N.; Yang, Y.-W. Molecules 2017, 22, 1640. |
[6] | Wang, N.-P.; Zhang, Q.-P.; Zhang, Y.-H.; Chen, H.-Y. Acta Chim. Sinica 2003, 61, 597 (in Chinese). |
[6] | (王南平, 张其平, 张跃华, 陈洪渊, 化学学报, 2003, 61, 597.) |
[7] | Li, Y.-X.; Liu, Y. Acta Chim. Sinica 2023, 81, 928 (in Chinese). |
[7] | (李永雪, 刘育, 化学学报, 2023, 81, 928.) |
[8] | Liu, J.; Lan, Y.; Yu, Z.-Y.; Tan, C. S.; Parker, R. M.; Abell, C. Scherman, O. A. Acc. Chem. Res. 2017, 50, 208. |
[9] | Pinalli, R.; Pedrini, A.; Dalcanale, E. Chem. Soc. Rev. 2018, 47, 7006. |
[10] | Jiang, C.-Y.; Song, Z.-R.; Yu, L.-L.; Ye, S.-J.; He, H. Trends Anal. Chem. 2020, 133, 116086. |
[11] | Wu, L.-L.; Wang, Y.-D.; Xu, X.; Liu, Y.-L.; Lin, B.-Q.; Zhang, M.-X.; Zhang, J.-L.; Wan, S.; Yang, C.-Y.; Tan, W.-H. Chem. Rev. 2021, 121, 12035. |
[12] | Micura, R.; H?bartner, C. Chem. Rev. 2020, 49, 7331. |
[13] | Liu, J.-W.; Cao, Z.-H.; Lu, Y. Chem. Rev. 2009, 109, 1948. |
[14] | Samanta, D.; Ebrahimi, S. B.; Mirkin, C. A. Adv. Mater. 2020, 32, e1901743. |
[15] | Li, L.; Xu, S.-J.; Yan, H.; Li, X.-W.; Yazd, H. S.; Li, X.; Huang, T.; Cui, C.; Jiang, J.-H.; Tan, W.-H. Angew. Chem. Int. Ed. 2021, 60, 2221. |
[16] | Tan, W.-F.; He, J.-Q.; Deng, J.-L.; Yang, X.-W.; Cui, L.-J.; Ran, R.-Z.; Du, G.-W.; Jiang, X.-Q. Sci. Rep. 2018, 8, 3309. |
[17] | Kim, K.; Lee, C. H.; Park, C. B. Chem. Soc. Rev. 2020, 49, 5446. |
[18] | Mandal, S.; Li, Z.; Chatterjee, T.; Khanna, K.; Montoya, K.; Dai, L.-H.; Petersen, C.; Li, L.-D.; Tewari, M.; Alexander, J. B.; Walter, N. G. Acc. Chem. Res. 2021, 54, 388. |
[19] | Launonen, I. M.; Lyytik?inen, N.; Casado, J.; Anttila, E. A.; Szabó, A.; Haltia, U. M.; Jacobson, C. A.; Lin, J. R.; Maliga, Z.; Howitt, B.; Strickland, K. C.; Santagata, S.; Elias, K.; D'Andrea, A. D.; Konstantinopoulos, P. A.; Sorger, P. K.; F?rkkil?, A. Nat. Commun. 2022, 13, 835. |
[20] | Chang, D.-R.; Zakaria, S.; Esmaeili, S. S.; Chang, Y.-Y.; Filipe, C. D. M.; Soleymani, L.; Brennan, J. D; Liu, M.; Li, Y.-F. Acc. Chem. Res. 2021, 54, 3540. |
[21] | Khoo, A.; Liu, L. Y.; Nyalwidhe, J. O.; Semmes, O. J.; Vesprini, D.; Downes, M. R.; Boutros, P. C.; Liu, S. K.; Kislinger, T. Nat. Rev. Urol. 2021, 18, 707. |
[22] | Li, M.; Yin, F.-F.; Song, L.; Mao, X.-H.; Li, F.; Fan, C.-H.; Zuo, X.-L.; Xia, Q. Chem. Rev. 2021, 121, 10469. |
[23] | Wei, X.-W.; Zhuang, L.-J.; Li, H.-B.; He, C.-J.; Wan, H.; Hu, N.; Wang, P. Small 2020, 16, e2005828. |
[24] | Das, J.; Kelley, S. O. Angew. Chem. Int. Ed. 2020, 59, 2554. |
[25] | Minopoli, A.; Della, V. B.; Lenyk, B.; Gentile, F.; Tanner, J. A.; Offenh?usser, A.; Mayer, D.; Velotta, R. Nat. Commun. 2020, 11, 6134. |
[26] | Tang, Y.; Gao, L.; Feng, W.; Guo, C.; Yang, Q.-F.; Li, F.; Le, X. C. Chem. Soc. Rev. 2021, 50, 11844. |
[27] | Madhurantakam, S.; Muthukumar, S.; Prasad, S. ACS Omega 2022, 7, 12467. |
[28] | Deng, C. L.; Murkli, S. L.; Isaacs, L. D. Chem. Soc. Rev. 2020, 49, 7516. |
[29] | Bidar, N.; Oroojalian, F.; Baradaran, B.; Eyvazi, S.; Amini, M.; Jebelli, A.; Samad, H. S.; Paria, P. P.; Mokhtarzadeh, A.; Guardia, M. L. Trac-trend. Anal. Chem. 2020, 131, 116021. |
[30] | Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Essays Biochem. 2016, 60, 1. |
[31] | Tan, W.-H.; Wang, K.-M.; Drake, T. J. Curr. Opin. Chem. Biol. 2004, 8, 547. |
[32] | Shi, H.; He, X.-X.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Guo, Q.-P.; Huo, X.-Q. Sci. China Chem. 2010, 53, 704. |
[33] | Caputo, T. M.; Battista, E.; Netti, P. A.; Causa, F. ACS Appl. Mater. Interfaces 2019, 11, 17147. |
[34] | Zhang, Z.; Xiang, X.; Huang, F.-H.; Zheng, M.-M., Xia, X.-Y.; Han, L. Sensor. Actuat. B-chem. 2018, 273, 159. |
[35] | Cui, L.; Ke, G.-L.; Lin, X.-Y.; Song, Y.-L.; Zhang, H.-M.; Guan, Z.-C.; Zhu, Z.; Yang, C. J. Methods 2013, 63, 202. |
[36] | Bidar, N.; Amini, M.; Oroojalian, F.; Behzad, B.; Samad, H. S.; Shahbazi, M. A.; Mahmoud, H.; Ahad, M.; Michael, R. H.; Miguel, G. Trac-trend. Anal. Chem. 2021, 134, 276. |
[37] | Zheng, J.; Li, J.-S.; Gao, X.-X.; Jin, J.-Y.; Wang, K.-M.; Tan, W.-H.; Yang, R.-H. Anal. Chem. 2010, 82, 3914. |
[38] | Zhang, Q.-E.; Deng, T.; Li, J.-S.; Xu, W.-J.; Shen, G.-L.; Yu, R.-Q. Biosens. Bioelectron. 2015, 68, 253. |
[39] | Harris, D. C.; Saks, B. R.; Jayawickramarajah, J. J. Am. Chem. Soc. 2011, 133, 7676. |
[40] | He, L.-L.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Zhao, F.; Huang, J.; Liu, J.-B. Chem. Commun. (Camb) 2014, 50, 7803. |
[41] | Stoltenburg, R.; Reinemann, C.; Strehlitz, B. Biomol. Eng. 2007, 24, 381. |
[42] | Fang, X.-H.; Tan, W.-H. Acc. Chem. Res. 2010, 43, 48. |
[43] | Tuerk, C.; Gold, L. Science 1990, 249, 505. |
[44] | Keefe, A. D.; Pai, S.; Ellington, A. Nat. Rev. Drug Discov. 2010, 9, 537. |
[45] | Wang, R.-W.; Zhu, G.-Z.; Mei, L.; Xie, Y.; Ma, H.-B.; Ye, M.; Qing, F.-L.; Tan, W.-H. J. Am. Chem. Soc. 2014, 136, 2731. |
[46] | Hicke, B. J.; Stephens, A. W.; Gould, T.; Chang, Y. F.; Lynott, C. K.; Heil, J.; Borkowski, S.; Hilger, C. S.; Cook, G.; Warren, S.; Schmidt, P. G. J. Nucl. Med. 2006, 47, 668. |
[47] | Shangguan, D.-H.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11838. |
[48] | Tan, W.-H.; Donovan, M. J.; Jiang, J.-H. Chem. Rev. 2013, 113, 2842. |
[49] | Kuai, H.; Zhao, Z.-L.; Mo, L.-T.; Liu, H.; Hu, X.-X.; Fu, T.; Zhang, X.-B.; Tan, W.-H. J. Am. Chem. Soc. 2017, 139, 9128. |
[50] | Jiang, Y.; Pan, X.-S.; Chang, J.; Niu, W.-J.; Hou, W.-J.; Kuai, H.; Zhao, Z.-L.; Liu, J.; Wang, M.; Tan, W.-H. J. J. Am. Chem. Soc. 2018, 140, 6780. |
[51] | Mao, Q.-X.; Wang, L.-C.; Xue, D.-D.; Lin, X.-X.; Sun, F.; Xu, P.-C.; Chen, J.-R.; Li, W.-Y.; Li, X.-C.; Yan, F.; Hu, C. Anal. Chem. 2024, 96, 2022. |
[52] | Shetty, D.; Khedkar, J. K.; Park, K. M.; Kim, K. Chem. Soc. Rev. 2015, 44, 8747. |
[53] | Tian, T.; Song, Y.-Y.; Wei, L.; Wang, J.-Q.; Fu, B.-S.; He, Z.-Y.; Yang, X. R.; Wu, F.; Xu, G.-H.; Liu, S. M.; Li, C.-G.; Wang, S.-R.; Zhou, X. Nucleic Acids Res. 2017, 45, 2283. |
[54] | Chen, Y.-Y.; Huang, Z.-H.; Xu, J. F.; Sun, Z.-W.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8, 22780. |
[55] | Chen, Y.-Y.; Huang, Z.-H.; Zhao, H.-Y.; Xu, J. F.; Sun, Z.-W.; Zhang, X. ACS Appl. Mater. Interfaces 2017, 9, 8602. |
[56] | Zhou, X.; Su, X.-Y.; Pathak, P.; Vik, R.; Vinciguerra, B.; Isaacs, L.; Jayawickramarajah, J. J. Am. Chem. Soc. 2017, 139, 13916. |
[57] | Ihara, T.; Uemura, A.; Futamura, A.; Shimizu, M.; Baba, N.; Nishizawa, S.; Teramae, N.; Jyo, A. J. Am. Chem. Soc. 2009, 131, 1386. |
[58] | Yang, C.; Spinelli, N.; Perrier, S.; Defrancq, E.; Peyrin, E. Anal. Chem. 2015, 87, 3139. |
[59] | Schmidt, B.; Barner, K. C. Angew. Chem. Int. Ed. 2017, 56, 8350. |
[60] | Liang, Y.; Li, E.; Wang, K.-Y.; Guan, Z.-J.; He, H.-H.; Zhang, L.-L.; Zhou, H.-C.; Huang, F.-H.; Fang, Y. Chem. Soc. Rev. 2022, 51, 8378. |
[61] | Albert, S. K.; Thelu, H. V. P.; Golla, M.; Krishnan, N.; Varghese, R. Nanoscale 2017, 9, 5425. |
[62] | Li, H.-Y.; Peng, E.-W.; Zhao, F.; Li, J.; Xue, J.-M. Pharmaceutics 2021, 13, 1884. |
[63] | Zhao, F.; Yin, H.; Zhang, Z.-X.; Li, J. Biomacromolecules 2013, 14, 476. |
[64] | He, L.-L.; Shi, K.-Q.; Liu, X.-L.; Wang, Y.; Song, L.-L.; Wu, D.; Wu, Y.-J.; Xiong, Y.-M.; Huang, P.-L. Sensor. Actuat. B-chem. 2023, 393, 134126. |
[65] | Liu, P.; Sun, S.; Guo, X.-C.; Yang, X.-H.; Huang, J.; Wang, K.-M.; Wang, Q.; Liu, J.-B.; He, L.-L. Anal. Chem. 2015, 87, 2665. |
[66] | Wang, D. G.; Fan, J. B.; Siao, C. J.; Berno, A.; Young, P.; Sapolsky, R.; Ghandour, G.; Perkins, N.; Winchester, E.; Spencer, J.; Kruglyak, L.; Stein, L.; Hsie, L.; Topaloglou, T.; Hubbell, E.; Robinson, E.; Mittmann, M.; Morris, M. S.; Shen, N.; Kilburn, D.; Rioux, J.; Nusbaum, C.; Rozen, S.; Hudson, T. J.; Lipshutz, R.; Chee, M.; Lander, E. S. Science 1998, 280, 1077. |
[67] | Yeh, H. C.; Sharma, J.; Shih, IeM.; Vu, D. M.; Martinez, J. S.; Werner, J. H. A. J. Am. Chem. Soc. 2012, 134, 11550. |
[68] | Irizarry, K.; Kustanovich, V.; Li, C.; Brown, N.; Nelson, S.; Wong, W.; Lee, C. J. Nat. Genet. 2000, 26, 233. |
[69] | Guo, Y.-H.; Xu, P.; Hu, H.; Zhou, X.-D.; Hu, J.-M. Talanta 2013, 114, 138. |
[70] | Liu, G.; Lao, R.-J.; Xu, L.; Xu, Q.; Li, L.-Y.; Zhang, M.; Song, S.-P.; Fan, C.-H. Biosens. Bioelectron. 2013, 42, 516. |
[71] | Ihara, T.; Wasano, T.; Nakatake, R.; Arslan, P.; Futamura, A.; Jyo, A. Chem. Commun. (Camb) 2011, 47, 12388. |
[72] | Zou, Z.; Qing, Z.-H.; He, X.-X.; Wang, K.-M.; He, D.-G.; Shi, H.; Yang, X.; Qing, T.-P.; Yang, X.-X. Talanta 2014, 125, 306. |
[73] | Guo, B.-Y.; Sheng, Y.-Y.; Zhou, K.; Liu, Q.-S.; Liu, L.; Wu, H.-C. Angew. Chem. Int. Ed. 2018, 57, 3602. |
[74] | Xu, J.; Gao, Y.-F.; Li, B.-X.; Jin, Y. Biosens. Bioelectron. 2016, 80, 91. |
[75] | Yang, H.; Duan, Z.-Z.; Liu, F.-B.; Zhao, Z.-Y.; Liu, S.-M. ACS Macro Lett. 2023, 12, 295. |
[76] | Yu, Z.-Z.; Wang, M.-M.; Pan, W.; Wang, H.-Y.; Li, N.; Tang, B. Chem. Sci. 2017, 8, 4896. |
[77] | Gu, P.-L.; Li, Y.; Li, L.-Y.; Deng, S.-Y.; Zhu, X.-K.; Song, Y.; Song, E.-Q.; Tan, W.-H. ACS Nano 2023, 17, 24384. |
[78] | Cui, R.; Wang, F.; Meng, X.-Y.; Zhou, R.-A.; Sun, Z.-G.; Cheng, Y.; Zhu, H.-Q.; Wang, Y. Adv. Healthc. Mater. 2024, 13, e2401885. |
/
〈 |
|
〉 |