Article

Electropolymerization of Novel Poly-m-phenylenediamine Membrame for H2/CO2 Separation

  • Mengxi Zhang ,
  • Yuying Zhang ,
  • Jiaxuan Qin ,
  • Xiao Feng ,
  • Xueyan Li ,
  • Tong Chang ,
  • Haiying Yang
Expand
  • a Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, China
    b School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
    c School of Chemical Engineering and Technology, Taiyuan University of Science & Technology, Taiyuan 030024, China

Received date: 2024-12-31

  Online published: 2025-02-05

Supported by

Shanxi Provincial Basic Research Program(202203021212301); Shanxi Provincial Basic Research Program(202303021222244); Shanxi Provincial Basic Research Program(202303021211188); Shanxi Provincial Basic Research Program(202303021212214); Yuncheng Basic Research Program(YCKJ-2023049); PhD research Launch project of Yuncheng University(YQ-202414); Scientific Research and Innovation Team Construction Program of Yuncheng University

Abstract

Membrane-based gas separations have tremendous potential for hydrogen purification due to high energy efficiency and easy operation, and the separation performance is significantly influenced by membrane materials. Owing to the low cost and processability, polymer membranes have been widely commercialized among these membranes. While, the trade-off between permeability and selectivity is insurmountable for dense polymer membranes. Therefore, introducing rigid porosity into polymer membranes is an urgent issue that needs to be solved. In our study, several aniline-based derivatives with multiple electrochemical active sites (1,3,5-triaminobenzene, o-phenylenediamine and m-phenylenediamine) were rationally designed and electropolymerized to yield novel conjugated microporous networks. Cyclic voltammetry technology was used for electropolymerization, and Ag/Ag+ electrode was selected as the reference electrode, with indium tin oxide (ITO) conductive glass and Ti sheet as the working electrode and counter electrode respectively. Finally, a homogenous and free-standing poly-m-phenylenediamine (PMPD) membrane was obtained after 40-circles electropolymerization. The polymerization reaction was confirmed by Fourier transform infrared spectroscopy (FTIR), solid-state 13C nuclear magnetic resonance spectra (13C NMR) and elemental analysis (EA). The morphology, thermal stability and porosity of PMPD were measured by scanning electron microscopy (SEM), thermogravimetric analysis (TG), and N2-77 K sorption isotherm. The gas separation ability and mechanical performance of PMPD membrane were studied. The H2/CO2 separation selectivity reaches 30 with 1350 Barrer of H2 permeability, which can exceed the Robeson upper bound. Furthermore, the thermal and 7 d long-term stability tests demonstrate their potential for industrial applications. The resulted H2 diffusivity (120×10-7 cm2•s-1) of PMPD membrane was superior to CO2 (2.4×10-7 cm2•s-1), which indicated that the diffusivity of H2 playing a dominant role in separation process. Molecular dynamics simulations were subsequently carried out to mimic the adsorption and diffusion behaviors of H2 and CO2 in PMPD respectively. The results also demonstrated that H2 exhibited more outstanding diffusivity than CO2. This simple, scalable, and cost-effective electropolymerization strategy holds promise for the design of other conjugated microporous polymers for key energy-intensive gas separations.

Cite this article

Mengxi Zhang , Yuying Zhang , Jiaxuan Qin , Xiao Feng , Xueyan Li , Tong Chang , Haiying Yang . Electropolymerization of Novel Poly-m-phenylenediamine Membrame for H2/CO2 Separation[J]. Acta Chimica Sinica, 2025 , 83(2) : 132 -138 . DOI: 10.6023/A24120388

References

[1]
Lubitz, W.; Tumas, B. Chem. Rev. 2007, 107, 3900.
[2]
Ockwig, N. W.; Nenoff, T. M. Chem. Rev. 2007, 107, 4078.
[3]
Mendes, D.; Mendes, A.; Madeira, L. M.; Iulianelli, A.; Sousa, J. M.; Basile, A. Asia-Pac. J. Chem. Eng. 2009, 5, 111.
[4]
Cai, L.; He, T.; Xiang, Y.; Guan, Y. Energy 2020, 207, 118296.
[5]
(a) Abdollahi, M.; Yu, J.; Liu, P. K. T.; Ciora, R.; Sahimi, M.; Tsotsis, T. T. J. Membr. Sci. 2010, 363, 160.
[5]
(b) Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804.
[6]
(a) Ku, A. Y.; Kulkarni, P.; Shisler, R.; Wei, W. J. Membr. Sci. 2011, 367, 233.
[6]
(b) Merkel, T. C.; Zhou, M.; Baker, R. W. J. Membr. Sci. 2012, 389, 441.
[6]
(c) Padurean, A.; Cormos, C.-C.; Agachi, P.-S. Int. J. Greenh. Gas Con. 2012, 7, 1.
[6]
(d) Scholes, C. A.; Smith, K. H.; Kentish, S. E.; Stevens, G. W. Int. J. Greenh. Gas Con. 2010, 4, 739.
[7]
Bhalani, D. V.; Lim, B. Molecules 2024, 29, 4676.
[8]
(a) Iulianelli, A.; Algieri, C.; Donato, L.; Garofalo, A.; Galiano, F.; Bagnato, G.; Basile, A.; Figoli, A. Int. J. Hydrogen Energ. 2017, 42, 22138.
[8]
(b) Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Energ. Convers. Manage 2018, 165, 602.
[9]
(a) Adhikari, S.; Fernando, S. Ind. Eng. Chem. Res. 2006, 45, 875.
[9]
(b) Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. J. Membr. Sci. 2010, 359, 115.
[9]
(c) Cersosimo, M.; Brunetti, A.; Drioli, E.; Fiorino, F.; Dong, G.; Woo, K. T.; Lee, J.; Lee, Y. M.; Barbieri, G. J. Membr. Sci. 2015, 492, 257.
[9]
(d) Lin, H.; Van Wagner, E.; Freeman, B. D.; Toy, L. G.; Gupta, R. P. Science 2006, 311, 639.
[9]
(e) He, W.; Wang, B.; Feng, H.; Kong, X.; Li, T.; Xiao, R. Acta Chim. Sinica 2024, 82, 226 (in Chinese).
[9]
(何文, 王波, 冯晗俊, 孔祥如, 李桃, 肖睿, 化学学报, 2024, 82, 226.)
[10]
Baker, R. W.; Low, B. T. Macromolecules 2014, 47, 6999.
[11]
(a) Lee, J. S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.
[11]
(b) Zhang, M.; Jing, X.; Zhao, S.; Shao, P.; Zhang, Y.; Yuan, S.; Li, Y.; Gu, C.; Wang, X.; Ye, Y.; Feng, X.; Wang, B. Angew. Chem. Int. Ed. 2019, 58, 8768.
[11]
(c) Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
[11]
(d) Zhang, P.; Weng, Z.; Guo, J.; Wang, C. Chem. Mater. 2011, 23, 5243.
[11]
(e) Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L.; Wang, L.; Saeki, A.; Irle, S.; Seki, S.; Dong, Y.; Jiang, D. Adv. Mater. 2012, 24, 3026.
[11]
(f) Hao, Q.; Tao, Y.; Ding, X.; Yang, Y.; Feng, J.; Wang, R.-L.; Chen, X.-M.; Chen, G.-L.; Li, X.; Ouyang, H.; Hu, X.; Tian, J.; Han, B.-H.; Zhu, G.; Wang, W.; Zhang, F.; Tan, B.; Li, Z.-T.; Wang, D.; Wan, L.-J. Sci. China Chem. 2023, 66, 620.
[12]
(a) Wang, W.; Zhang, Y.; Chen, L.; Chen, H.; Hu, S.; Li, Q.; Liu, H.; Qiao, S. Polym. Chem. 2021, 12, 650.
[12]
(b) Chen, Q.; Luo, M.; Hammershoj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C. G.; Han, B. H. J. Am. Chem. Soc. 2012, 134, 6084.
[12]
(c) Ma, H.; Ren, H.; Zou, X.; Sun, F.; Yan, Z.; Cai, K.; Wang, D.; Zhu, G. J. Mater. Chem. A 2013, 1, 752.
[13]
(a) He, X.; Sin, H.; Liang, B.; Ghazi, Z. A.; Khattak, A. M.; Khan, N. A.; Alanagh, H. R.; Li, L.; Lu, X.; Tang, Z. Adv. Funct. Mater. 2019, 29, 1900134.
[13]
(b) Liang, B.; Wang, H.; Shi, X.; Shen, B.; He, X.; Ghazi, Z. A.; Khan, N. A.; Sin, H.; Khattak, A. M.; Li, L.; Tang, Z. Nat. Chem. 2018, 10, 961.
[13]
(c) Xu, H.; Wang, C.; Liu, Z.; Shi, W. Acta Chim. Sinica 2024, 82, 458 (in Chinese).
[13]
(徐晗, 王聪芝, 刘峙嵘, 石伟群, 化学学报, 2024, 82, 458.)
[14]
Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
[15]
Bhunia, A.; Vasylyeva, V.; Janiak, C. Chem. Commun. 2013, 49, 3961.
[16]
Zhang, W.; Li, C.; Yuan, Y.-P.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Mater. Chem. 2010, 20, 6413.
[17]
Muenmart, D.; Foster, A. B.; Harvey, A.; Chen, M.-T.; Navarro, O.; Promarak, V.; McCairn, M. C.; Behrendt, J. M.; Turner, M. L. Macromolecules 2014, 47, 6531.
[18]
Zhang, M.; Feng, X. Acta Chim. Sinica 2022, 80, 168 (in Chinese).
[18]
(张蒙茜, 冯霄, 化学学报 , 80, 168.)
[19]
Lindemann, P.; Tsotsalas, M.; Shishatskiy, S.; Abetz, V.; Krolla-Sidenstein, P.; Azucena, C.; Monnereau, L.; Beyer, A.; G?lzh?user, A.; Mugnaini, V.; Gliemann, H.; Br?se, S.; W?ll, C. Chem. Mater. 2014, 26, 7189.
[20]
(a) Chen, Z.; Chen, M.; Yu, Y.; Wu, L. Chem. Commun. 2017, 53, 1989.
[20]
(b) Shao, P.; Yao, R.; Li, G.; Zhang, M.; Yuan, S.; Wang, X.; Zhu, Y.; Zhang, X.; Zhang, L.; Feng, X.; Wang, B. Angew. Chem. Int. Ed. 2020, 59, 4401.
[21]
Senkovskyy, V.; Senkovska, I.; Kiriy, A. ACS Macro Letters 2012, 1, 494.
[22]
Wang, L.; Zeng, C.; Xu, H.; Yin, P.; Chen, D.; Deng, J.; Li, M.; Zheng, N.; Gu, C.; Ma, Y. Chem. Sci. 2019, 10, 1023.
[23]
(a) Zhang, Q.; Dong, H.; Hu, W. J. Mater. Chem. C 2018, 6, 10672.
[23]
(b) Suresh, V. M.; Scherf, U. Macromol. Chem. Phys. 2018, 219, 1800207.
[23]
(c) Gu, C.; Huang, N.; Chen, Y.; Qin, L.; Xu, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. Angew. Chem. Int. Ed. 2015, 54, 13594.
[24]
Pelit, L.; Dizdas, T. N. J. Sep. Sci. 2013, 36, 3234.
[25]
Crapnell, R. D.; Hudson, A.; Foster, C. W.; Eersels, K.; Grinsven, B. V.; Cleij, T. J.; Banks, C. E.; Peeters, M. Sensors 2019, 19, 1204.
[26]
Morin, P.-O.; Bura, T.; Leclerc, M. Mater. Horiz. 2016, 3, 11.
[27]
Ates, M.; Uludag, N. J. Solid State Electr. 2016, 20, 2599.
[28]
Robeson, L. M. J. Membr. Sci. 2008, 320, 390.
Outlines

/