PdZn Alloy Catalysts Modulating the Selectivity of CO Esterification Products: from Dimethyl Oxalate to Dimethyl Carbonate
Received date: 2024-11-14
Online published: 2025-02-07
Supported by
National Key R&D Program of China(2021YFB3801600); National Natural Science Foundation of China(22172171); Natural Science Foundation of Fujian Province(2022H0039); Grant YLU-DNL Fund(2022010); Program of Haixi Institutes(CXZX-2022-GH05)
Currently, 10 million tons of coal to ethylene glycol (CTEG) plants have been built in China. Due to the poor market conditions of ethylene glycol, many plants are in a state of shutdown and are in urgent need of transformation. CO esterification in CTEG can produce two important ester chemicals, dimethyl oxalate (DMO) and dimethyl carbonate (DMC). Converting the product DMO into higher value-added DMC is one of the transition ideas. DMO can be converted to DMC by decarbonylation, but new reactors and catalysts are needed. It would be more economical and challenging to utilize CTEG plant to produce DMC directly by replacing the catalyst with a new one. Pd/α-Al2O3 is the traditional catalyst for DMO production. In this work, we proposed a PdZn alloying strategy to modulate the selectivity of CO esterification products, and realize the product selectivity change from DMO to DMC. Compared with Pd/α-Al2O3, the selectivity to DMO over PdZn(1:4)/α-Al2O3 was significantly decreased (85.8%→16.8%), and the DMC selectivity was increased remarkably (14.2%→83.2%). The formation of PdZn alloy was demonstrated by X-ray diffraction (XRD), transmission electron microscope (TEM), and other characterizations, X-ray photoelectron spectroscopy (XPS) results showed that the alloy formed between Zn and Pd significantly changed the electron density of the Pd component, and the Pd component was in an electron-deficient state, which was conducive to the improvement of the performance of the DMC reaction. In addition, the results of CO diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization showed that Zn can disperse Pd. With the increase of the second metal Zn content, the continuous Pd metal phase disappears, and an isolated single-atom alloy state may be formed, which inhibits the formation of the byproduct DMO. The present study not only provides a new way to regulate the selectivity of CO esterification products, but also provides an idea for the conversion of CTEG plants.
Xiang-Yu Li , Jia-Kai Li , Shu-Juan Lin , Ming-Sheng Wang , Jing Sun , Zhong-Ning Xu , Guo-Cong Guo . PdZn Alloy Catalysts Modulating the Selectivity of CO Esterification Products: from Dimethyl Oxalate to Dimethyl Carbonate[J]. Acta Chimica Sinica, 2025 , 83(3) : 206 -211 . DOI: 10.6023/A24110346
[1] | Yin, Z.; Yan, B.; Wang, Z. Chem. Ent. Mgt. 2024, (13), 54 (in Chinese). |
[1] | (尹子帆, 闫炳旭, 王志强, 化工管理, 2024, (13), 54.) |
[2] | Li, F.; Li, L. Chem. Ent. Mgt. 2021, (34), 25 (in Chinese). |
[2] | (李飞飞, 李丽君, 化工管理, 2021, (34), 25.) |
[3] | Zhao, T.-J.; Chen, D.; Dai, Y.-C.; Yuan, W.-K.; Holmen, A. Ind. Eng. Chem. Res. 2004, 43, 4595. |
[4] | Wang, S.; Li, W.; Dong, Y.; Zhao, Y.; Ma, X. Catal. Commun. 2015, 72, 43. |
[5] | Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Wang, Z.-Q.; Lv, D.-M.; Sun, J.; Chen, Y.; Guo, G.-C. ACS Catal. 2015, 5, 4410. |
[6] | Tan, H.-Z.; Wang, Z.-Q.; Xu, Z.-N.; Sun, J.; Xu, Y.-P.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Today 2018, 316, 2. |
[7] | Tundo, P.; Selva, M. Acc. Chem. Res. 2002, 35, 706. |
[8] | Gu, B.; Liu, G.; Yin, K.; Zhang, J.; Xiang, H.; Wang, Y. Appl. Chem. Ind. 2023, 52, 1248 (in Chinese). |
[8] | (谷豹, 刘刚, 尹科科, 张嘉容, 项火芳, 王玉高, 应用化工, 2023, 52, 1248.) |
[9] | Jv, N.; Li, C.; Li, F.; Xue, W.; Lv, J. New J. Chem. 2024, 48, 9062. |
[10] | Li, G.-S. Ind. Catal. 2023, 31, 31 (in Chinese). |
[10] | (李贵生, 工业催化, 2023, 31, 31.) |
[11] | Wang, Z.-Q.; Sun, J.; Xu, Z.-N.; Guo, G.-C. Nanoscale 2020, 12, 20131. |
[12] | Lv, D.-M.; Xu, Z.-N.; Peng, S.-Y.; Wang, Z.-Q.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Sci. Technol. 2015, 5, 3333. |
[13] | Wu, H.-Y.; Qin, Y.-Y.; Xiao, Y.-H.; Chen, J.-S.; Ye, R.; Guo, R.; Yao, Y.-G. Small 2023, 19, 2208238. |
[14] | Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Wang, Z.-Q.; Chen, Y.; Lv, D.-M.; Lu, G.; Guo, G.-C. Catal. Sci. Technol. 2014, 4, 1925. |
[15] | Xu, Z.-N.; Sun, J.; Lin, C.-S.; Jiang, X.-M.; Chen, Q.-S.; Peng, S.-Y.; Wang, M.-S.; Guo, G.-C. ACS Catal. 2012, 3, 118. |
[16] | Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Chen, Y.-M.; Sun, J.; Wang, Z.-Q.; Wang, M.-S.; Guo, G.-C. Chem. Commun. 2013, 49, 5718. |
[17] | Tan, H.-Z.; Wang, Z.-Q.; Xu, Z.-N.; Sun, J.; Chen, Z.-N.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Sci. Technol. 2017, 7, 3785. |
[18] | Yamamoto, Y.; Matsuzaki, T.; Tanaka, S.; Nishihira, K.; Ohdan, K.; Nakamura, A.; Okamoto, Y. J. Chem. Soc., Faraday Trans. 1997, 93, 3721. |
[19] | Hu, S.; Xie, C.; Xu, Y.-P.; Chen, X.; Gao, M.-L.; Wang, H.; Yang, W.; Xu, Z.-N.; Guo, G.-C.; Jiang, H.-L. Angew. Chem. Int. Ed. 2023, 62, e202311625. |
[20] | Nakaya, Y.; Furukawa, S. Chem. Rev. 2023, 123, 5859. |
[21] | Yin, Y.; Hu, B.; Li, X.; Zhou, X.; Hong, X.; Liu, G. Appl. Catal. B: Environ. 2018, 234, 143. |
[22] | Furukawa, S.; Suzuki, R.; Komatsu, T. ACS Catal. 2016, 6, 5946. |
[23] | Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. ACS Catal. 2016, 6, 1054. |
[24] | Miyazaki, M.; Furukawa, S.; Takayama, T.; Yamazoe, S.; Komatsu, T. ACS Appl. Nano Mater. 2019, 2, 3307. |
[25] | Chen, X.; Shi, C.; Wang, X.-B.; Li, W.-Y.; Liang, C. Commun. Chem. 2021, 4, 175. |
[26] | Cheng, M.; Zhang, X.; Guo, Z.; Lv, P.; Xiong, R.; Wang, Z.; Zhou, Z.; Zhang, M. J. Colloid Interface Sci. 2021, 602, 459. |
[27] | Rodriguez, J. A. J. Phys. Chem. 1994, 98, 5758. |
[28] | Wang, H.; Luo, Q.; Liu, W.; Lin, Y.; Guan, Q.; Zheng, X.; Pan, H.; Zhu, J.; Sun, Z.; Wei, S.; Yang, J.; Lu, J. Nat. Commun. 2019, 10, 4998. |
[29] | Tan, H.-Z.; Chen, Z.-N.; Xu, Z.-N.; Sun, J.; Wang, Z.-Q.; Si, R.; Zhuang, W.; Guo, G.-C. ACS Catal. 2019, 9, 3595. |
/
〈 |
|
〉 |