Advances in Porous Materials for Transuranic Element Separation
Received date: 2024-12-20
Online published: 2025-02-17
Supported by
National Natural Science Foundation of China(U2067212); National Natural Science Foundation of China(22176191); National Science Fund for Distinguished Young Scholars(21925603)
Nuclear energy, recognized as an efficient and stable power source, is poised to play an increasingly significant role in the global energy mix. The reprocessing of spent nuclear fuel is crucial in assessing whether nuclear energy can be deemed a sustainable form of energy. Among the various technologies involved, partitioning-transmutation technology not only reduces the long-term hazards associated with radioactive waste but also mitigates the environmental risks linked to the treatment of nuclear waste. The transuranic elements in high-level liquid waste (HLLW) possess relatively high toxicity and long half-lives. Therefore, the effective separation of transuranic elements from HLLW is a necessary condition and a key technology for separation-transmutation. Among the methods for the separation of actinides, solvent extraction has been widely applied due to its simplicity and low cost. However, this method also presents several challenges, such as the use of toxic or flammable solvents, the formation of emulsions, and the generation of large amounts of secondary organic hazardous waste. In contrast, solid-phase adsorption does not require organic solvents, thereby reducing the volume of solvents and the risk of secondary pollution. Moreover, the adsorption process can be conducted at ambient temperature and pressure, making it simple, low-cost, environmentally friendly, and regenerable. These advantages have contributed to its increasing popularity and research interest in recent years. However, the harsh conditions in HLLW present significant challenges in the development of solid-phase adsorbents. Despite many obstacles, advancements in solid-phase adsorbent materials for transuranic element separation have demonstrated considerable potential within the nuclear energy sector. This article provides a comprehensive analysis of the benefits, challenges, and prospective applications of solid-phase adsorbents. It offers a systematic review of research progress in various solid adsorbents, including inorganic porous materials, carbon-based porous materials, polymer resins, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), specifically in the context of transuranic element separation. The review investigates their strengths in terms of adsorption performance, selectivity, stability, and regenerability. Additionally, it highlights research challenges such as the complexity of preparation, economic viability, and the scalability of production processes. This thorough analysis is instrumental in the development of more efficient and eco-friendly transuranic element adsorbent materials and in facilitating their integration into practical nuclear energy processing applications.
Liying Wang , Jipan Yu , Zhirong Liu , Weiqun Shi . Advances in Porous Materials for Transuranic Element Separation[J]. Acta Chimica Sinica, 2025 , 83(4) : 401 -414 . DOI: 10.6023/A24120376
[1] | Usman, O.; Ozkan, O.; Ike, G. N. J. Clean. Prod. 2024, 451, 142070. |
[2] | Li, K.; Yan, C.-C.; Wang, J.-R.; Zhu, K.; Guo, J.-J.; Zhang, Y.-G.; Shi, G.-Z.; Yin, Y.-C.; Cheng, L.-W.; Sun, L.; Wang, Y.-M.; Zhang, H.-L.; Sun, Y.; Yuan, J.-Y.; Ma, W.-L.; Ji, G.-X.; Chai, Z.-F.; Wang, Y.-X.; Ouyang, X.-P.; Wang, S.-A. Nature 2024, 633, 811. |
[3] | Bashir, M. F.; Ma, B.-L.; Sharif, A.; Ao, T.; Koca, K. Technol. Soc. 2023, 75, 102385. |
[4] | Sadekin, S.; Zaman, S.; Mahfuz, M.; Sarkar, R. Energy Procedia 2019, 160, 513. |
[5] | Poumadère, M.; Bertoldo, R.; Samadi, J. WIREs Clim. Change 2011, 2, 712. |
[6] | Myasoedov, B. F.; Kalmykov, S. N.; Kulyako, Yu. M.; Vinokurov, S. E. Geochem. Int. 2016, 54, 1156. |
[7] | Rodríguez-Penalonga, L.; Moratilla Soria, B. Energies 2017, 10, 1235. |
[8] | Madic, C.; Boullis, B.; Baron, P.; Testard, F.; Hudson, M. J.; Liljenzin, J.-O.; Christiansen, B.; Ferrando, M.; Facchini, A.; Geist, A.; Modolo, G.; Espartero, A. G.; De Mendoza, J. J. Alloys Compd. 2007, 444-445, 23. |
[9] | Ewing, R. C. Mineral. Mag. 2011, 75, 2359. |
[10] | Modolo, G.; Wilden, A.; Geist, A.; Magnusson, D.; Malmbeck, R. Radiochim. Acta 2012, 100, 715. |
[11] | Abderrahim, H. A.; Giot, M. Sustainability 2021, 13, 12643. |
[12] | Salvatores, M. Nucl. Eng. Des. 2005, 235, 805. |
[13] | Chen, J.; Wang, J.-C. Prog. Chem. 2011, 23, 1366. (in Chinese) |
[13] | (陈靖, 王建晨, 化学进展, 2011, 23, 1366.) |
[14] | Veliscek-Carolan, J. J. Hazard. Mater. 2016, 318, 266. |
[15] | Zhang, H.-L.; Li, A.; Li, K.; Wang, Z.-P.; Xu, X.-C.; Wang, Y.-X.; Sheridan, M. V.; Hu, H.-S.; Xu, C.; Alekseev, E. V.; Zhang, Z.-Y.; Yan, P.; Cao, K.-C.; Chai, Z.-F.; Albrecht-Sch?nzart, T. E.; Wang, S.-A. Nature 2023, 616, 482. |
[16] | Du, X.-W.; Ye, Q.-Z.; Xu, M.; Wan, Y.-X.; Peng, X.-J.; Su, G.; Yang, Y.; Gao, X.; Shi, X.-M. Chin. J. Eng. Sci. 2018, 20, 17. (in Chinese) |
[16] | (杜祥婉, 叶奇蓁, 徐銤, 万元熙, 彭先觉, 苏罡, 杨勇, 高翔, 师学明, 中国工程科学, 2018, 20, 17.) |
[17] | Miguirditchian, M.; Vanel, V.; Marie, C.; Pacary, V.; Charbonnel, M.-C.; Berthon, L.; Hérès, X.; Montuir, M.; Sorel, C.; Bollesteros, M.-J.; Costenoble, S.; Rostaing, C.; Masson, M.; Poinssot, C. Solvent Extr. Ion Exch. 2020, 38, 365. |
[18] | Magnusson, D.; Christiansen, B.; Glatz, J.; Malmbeck, R.; Modolo, G.; Serrano‐Purroy, D.; Sorel, C. Solvent Extr. Ion Exch. 2009, 27, 26. |
[19] | Serrano-Purroy, D.; Baron, P.; Christiansen, B.; Glatz, J.-P.; Madic, C.; Malmbeck, R.; Modolo, G. Sep. Purif. Technol. 2005, 45, 157. |
[20] | Takao, K.; Ikeda, Y. Eur. J. Inorg. Chem. 2020, 2020, 3443. |
[21] | De Jesus, K.; Rodriguez, R.; Baek, D. L.; Fox, R. V.; Pashikanti, S.; Sharma, K. J. Mol. Liq. 2021, 336, 116006. |
[22] | Zhang, Y.; Li, X.; Wang, W.-T. J. Nucl. Radiochem. 2024, 46, 37. (in Chinese) |
[22] | (张烨, 李想, 王文涛, 核化学与放射化学, 2024, 46, 37.) |
[23] | Zu, J.-H.; Fu, L.-X.; Pan, X.-H.; Wang, H. Nucl. Tech. 2020, 43, 34. (in Chinese) |
[23] | (俎建华, 付凌霄, 潘晓晗, 王焕, 核技术, 2020, 43, 34.) |
[24] | Chi, Z.-X.; Luo, S.; Tian, J.-L.; Jiang, C.-X.; Zhou, J.-L.; Deng, Y.; Pan, Q. Appl. Chem. Ind. 2019, 48, 656. (in Chinese) |
[24] | (池哲鑫, 罗爽, 田景林, 姜春雪, 周江林, 邓煜, 潘茜, 应用化工, 2019, 48, 656.) |
[25] | Meng, Y.; Ni, S.; Liu, Y.-F.; Wang, W.-J.; Zhao, Y.; Zhu, Y.-D.; Yang, L.-R. CIESC J. 2024, 75, 1616. (in Chinese) |
[25] | (孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘, 化工学报, 2024, 75, 1616.) |
[26] | Xu, Y.; Wang, P.; Zhao, M.; Niu, Z.-W.; Pan, D.-Q.; Wu, W.-S. At. Energy Sci. Technol. 2019, 53, 1773. (in Chinese) |
[26] | (徐杨, 王鹏, 赵敏, 牛智伟, 潘多强, 吴王锁, 原子能科学技术, 2019, 53, 1773.) |
[27] | Xie, Y.-H.; Yu, L.; Chen, L.; Chen, C.; Wang, L.; Liu, F.-L.; Liao, Y.; Zhang, P.; Chen, T.; Yuan, Y.-H.; Lu, Y.-X.; Huang, B.-Y.; Yang, H.; Wang, S.-H.; Wang, S.-A.; Ma, L.-J.; Luo, F.; Liu, Y.-H.; Hu, B.-W.; Wang, H.-Q.; Pan, D.-Q.; Zhu, W.-K.; Wang, N.; Wang, Z.; Mao, L.; Ma, S.-Q.; Wang, X.-K. Sci. China Chem. 2024, 67, 3515. |
[28] | Khayambashi, A.; Chen, L.; Dong, X.; Li, K.; Wang, Z.-P.; He, L.-W.; Annam, S.; Chen, L.-X.; Wang, Y.-X.; Sheridan, M. V.; Xu, C.; Wang, S.-A. Chin. Chem. Lett. 2022, 33, 3429. |
[29] | Li, X.-B.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Zhang, M.; Shi, W.-Q. Chin. Chem. Lett. 2024, 35, 109359. |
[30] | Mikeska, E. R.; Wilson, R. E.; Sen, A.; Autschbach, J.; Blakemore, J. D. J. Am. Chem. Soc. 2024, 146, 21509. |
[31] | Dong, X.; Xu, C.; Chen, J. Bull. Chem. 2022, 83, 289. (in Chinese) |
[31] | (董雪, 徐超, 陈靖, 化学通报, 2022, 83, 289.) |
[32] | Wang, Y.-H.; Li, W.; Luo, S.; Liu, S.-X.; Ma, C.-H.; Li, J. Acta Chim. Sinica 2018, 76, 85. (in Chinese) |
[32] | (王引航, 李伟, 罗沙, 刘守新, 马春慧, 李坚, 化学学报, 2018, 76, 85.) |
[33] | Xu, H.; Wang, C.-Z.; Liu, Z.-R.; Shi, W.-Q. Acta Chim. Sinica 2024, 82, 458. (in Chinese) |
[33] | (徐晗, 王聪芝, 刘峙嵘, 石伟群, 化学学报, 2024, 82, 458.) |
[34] | Barbette, F.; Rascalou, F.; Chollet, H.; Babouhot, J. L.; Denat, F.; Guilard, R. Anal. Chim. Acta 2004, 502, 179. |
[35] | Meyer, D. J. M.; Bourg, S.; Conocar, O.; Broudic, J.-C.; Moreau, J. J. E.; Chi Man, M. W. Comptes Rendus Chim. 2007, 10, 1001. |
[36] | Ning, S.-Y.; Zou, Q.; Wang, X.-P.; Liu, R.-Q.; Wei, Y.-Z.; Zhao, Y.-P.; Ding, Y.-Q. J. Radioanal. Nucl. Chem. 2016, 307, 993. |
[37] | Ning, S.-Y.; Zhang, S.-C.; Zhou, J.; Zhang, W.; Wei, Y.-Z. J. Radioanal. Nucl. Chem. 2019, 322, 1023. |
[38] | Ning, S.-Y.; Wang, X.-P.; Zou, Q.; Shi, W.-Q.; Tang, F.-D.; He, L.-F.; Wei, Y.-Z. Sci. Rep. 2017, 7, 14679. |
[39] | Ning, S.-Y.; Zhou, J.; Zhang, S.-C.; Zhang, W.; Wei, Y.-Z. Radiochim. Acta 2020, 108, 425. |
[40] | Li, H.-B.; Ye, G.-A.; Wang, X.-R.; Lin, C.-S.; Su, Z.; Liu, Z.-Y.; Zhao, X.-H. J. Nucl. Radiochem. 2010, 32, 65. (in Chinese) |
[40] | (李辉波, 叶国安, 王孝荣, 林灿生, 苏哲, 刘占元, 赵兴红, 核化学与放射化学, 2010, 32, 65.) |
[41] | Wang, Z.; Liu, M.-C.; Wang, L.; Chang, Z.-Y.; Li, H.-B. Molecules 2022, 27, 3110. |
[42] | Lin, Y.-H.; Fiskum, S. K.; Yantasee, W.; Wu, H.; Mattigod, S. V.; Vorpagel, E.; Fryxell, G. E.; Raymond, K. N.; Xu, J.-D. Environ. Sci. Technol. 2005, 39, 1332. |
[43] | Fryxell, G. E.; Lin, Y.-H.; Fiskum, S.; Birnbaum, J. C.; Wu, H.; Kemner, K.; Kelly, S. Environ. Sci. Technol. 2005, 39, 1324. |
[44] | Burns, J. D.; Clearfield, A.; Borkowski, M.; Reed, D. T. Radiochim. Acta 2012, 100, 381. |
[45] | Cao, S.-W.; Yu, J.-G. J. Photochem. Photobiol. C Photochem. Rev. 2016, 27, 72. |
[46] | Yang, D.; Shi, X.-F.; Zhang, Y.-J.; Bu, X.-H. Acta Chim. Sinica 2023, 81, 1052. (in Chinese) |
[46] | (杨地, 史潇凡, 张冀杰, 卜显和, 化学学报, 2023, 81, 1052.) |
[47] | Parsons-Moss, T.; Wang, J.-X.; Jones, S.; May, E.; Olive, D.; Dai, Z.-R.; Zavarin, M.; Kersting, A. B.; Zhao, D.-Y; Nitsche, H. J. Mater. Chem. A 2014, 2, 11209. |
[48] | Kumar, P.; Sengupta, A.; Singha Deb, A. K.; Dasgupta, K.; Ali, S. M. RSC Adv. 2016, 6, 107011. |
[49] | Chappa, S.; Singha Deb, A. K.; Ali, S. M.; Debnath, A. K.; Aswal, D. K.; Pandey, A. K. J. Phys. Chem. B 2016, 120, 2942. |
[50] | Wang, Z.-P.; Huang, L.-Q.; Dong, X.; Wu, T.; Qing, Q.; Chen, J.; Lu, Y.-X.; Xu, C. Nat. Commun. 2023, 14, 261. |
[51] | Mazzoldi, P.; Carturan, S.; Quaranta, A.; Sada, C.; Sglavo, V. M. Riv. Nuovo Cimento 2013, 36, 397. |
[52] | Rao, T. P.; Praveen, R. S.; Daniel, S. Crit. Rev. Anal. Chem. 2004, 34, 177. |
[53] | Hubscher-Bruder, V.; Haddaoui, J.; Bouhroum, S.; Arnaud-Neu, F. Inorg. Chem. 2010, 49, 1363. |
[54] | Zhang, A.-Y.; Kuraoka, E.; Hoshi, H.; Kumagai, M. J. Chromatogr. A 2004, 1061, 175. |
[55] | Ansari, S.; Pathak, P.; Husain, M.; Prasad, A.; Parmar, V.; Manchanda, V. Talanta 2006, 68, 1273. |
[56] | Husain, M.; Ansari, S. A.; Mohapatra, P. K.; Gupta, R. K.; Parmar, V. S.; Manchanda, V. K. Desalination 2008, 229, 294. |
[57] | Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. |
[58] | Horwitz, E. P.; McAlister, D. R.; Bond, A. H.; Barrans, R. E. Solvent Extr. Ion Exch. 2005, 23, 319. |
[59] | Deepika, P.; Sabharwal, K. N.; Srinivasan, T. G.; Vasudeva Rao, P. R. Nucl. Technol. 2012, 179, 407. |
[60] | Sreenivasulu, B.; Brahmananda Rao, C. V. S.; Suresh, A.; Sivaraman, N. J. Radioanal. Nucl. Chem. 2022, 331, 3623. |
[61] | Pathak, S. K.; Tripathi, S. C.; Singh, K. K.; Mahtele, A. K.; Kumar, M.; Gandhi, P. M. J. Radioanal. Nucl. Chem. 2016, 308, 47. |
[62] | Ruhela, R.; Panja, S.; Singh, A. K.; Dhami, P. S.; Gandhi, P. M. J. Hazard. Mater. 2016, 318, 186. |
[63] | Singh, K. K.; Panja, S.; Ruhela, R.; Kumar, M.; Tripathi, S. C.; Singh, A. K.; Chakravartty, J. K.; Bajaj, P. N. Sep. Purif. Technol. 2015, 154, 186. |
[64] | Pribyl, J. G.; Taylor-Pashow, K. M. L.; Shehee, T. C.; Benicewicz, B. C. ACS Omega 2018, 3, 8181. |
[65] | James, S. L. Chem. Soc. Rev. 2003, 32, 276. |
[66] | Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415. |
[67] | Maurin, G.; Serre, C.; Cooper, A.; Férey, G. Chem. Soc. Rev. 2017, 46, 3104. |
[68] | Abdul Hamid, M. R.; Shean Yaw, T. C.; Mohd Tohir, M. Z.; Wan Abdul Karim Ghani, W. A.; Sutrisna, P. D.; Jeong, H.-K. J. Ind. Eng. Chem. 2021, 98, 17. |
[69] | Yuan, S. H.; Isfahani, A. P.; Yamamoto, T.; Muchtar, A.; Wu, C. Y.; Huang, G.; You, Y. C.; Sivaniah, E.; Chang, B. K.; Ghalei, B. Small Methods 2020, 4, 2000021. |
[70] | Rowsell, J. L. C.; Yaghi, O. M. Microporous Mesoporous Mater. 2004, 73, 3. |
[71] | Zhao, G.-G.; Qin, N.-Q.; Pan, A.; Wu, X.-Y.; Peng, C.-Y.; Ke, F.; Iqbal, M.; Ramachandraiah, K.; Zhu, J. J. Nanomater. 2019, 2019, 1. |
[72] | Jin, K.; Lee, B.; Park, J. Coord. Chem. Rev. 2021, 427, 213473. |
[73] | Patra, K.; Ansari, S. A.; Mohapatra, P. K. J. Chromatogr. A 2021, 1655, 462491. |
[74] | Acher, E.; Hacene Cherkaski, Y.; Dumas, T.; Tamain, C.; Guillaumont, D.; Boubals, N.; Javierre, G.; Hennig, C.; Solari, P. L.; Charbonnel, M.-C. Inorg. Chem. 2016, 55, 5558. |
[75] | Zhang, N.; Yuan, L.-Y.; Guo, W.-L.; Luo, S.-Z.; Chai, Z.-F.; Shi, W.-Q. ACS Appl. Mater. Interfaces 2017, 9, 25216. |
[76] | Guo, X.-G.; Qiu, S.; Chen, X.-T.; Gong, Y.; Sun, X.-Q. Inorg. Chem. 2017, 56, 12357. |
[77] | Li, B.-Y.; Zhang, Y.-M.; Ma, D.-X.; Shi, Z.; Ma, S.-Q. Nat. Commun. 2014, 5, 5537. |
[78] | Xiong, L.-P.; Gu, M.; Yang, C.-T.; Lv, K.; Wu, F.-C.; Hu, S.; Long, X.-G. Chem. Eng. J. 2022, 430, 132753. |
[79] | Zhao, X.-L.; Yu, X.-Z.; Wang, X.-Y.; Lai, S.-J.; Sun, Y.-Y.; Yang, D.-J. Chem. Eng. J. 2021, 407, 127221. |
[80] | Xiong, L.-P.; Lv, K.; Gu, M.; Yang, C.-T.; Wu, F.-C.; Han, J.; Hu, S. Chem. Eng. J. 2019, 355, 159. |
[81] | Qi, S.-Z.; Xiong, S.-S.; Xiong, L.-P.; Li, H.; Liu, B.-Y.; Liu, Y.; Xiong, K.; Yan, H.; Lv, K.; Liu, H.-W.; Hu, S. Inorg. Chem. 2023, 62, 10881. |
[82] | Xiong, L.-P.; Lyu, K.; Zeng, Y.-Y.; Yang, C.-T.; Chi, F.-T.; Hu, S.; Long, X.-G. J. Environ. Chem. Eng. 2023, 11, 109619. |
[83] | C?té, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. |
[84] | Wang, H.-M.; Ding, H.-M.; Meng, X.-S.; Wang, C. Chin. Chem. Lett. 2016, 27, 1376. |
[85] | Li, T.; Pan, Y.; Shao, B.-B.; Zhang, X.-S.; Wu, T.; He, Q.-Y.; He, M.; Ge, L.; Zhou, L.-F.; Liu, S.; Zheng, X.-M.; Ye, J.; Liu, Z.-F. Adv. Funct. Mater. 2023, 33, 2304990. |
[86] | El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; C?té, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268. |
[87] | Yu, J.-P.; Yuan, L.-Y.; Wang, S.; Lan, J.-H.; Zheng, L.-R.; Xu, C.; Chen, J.; Wang, L.; Huang, Z.-W.; Tao, W.-Q.; Liu, Z.-R.; Chai, Z.-F.; Gibson, J. K.; Shi, W.-Q. CCS Chem. 2019, 1, 286. |
[88] | Zhang, H.-D.; Wang, S.; Yu, J.-P.; Li, Z.-J.; Lan, J.-H.; Zheng, L.-R.; Liu, S.-Y.; Yuan, L.-Y.; Xiu, T.-Y.; Wang, J.-D.; Wang, X.-P.; Shi, W.-Q. Chem. Eng. J. 2023, 463, 142408. |
[89] | Cao, R.-J.; Zhou, H.-Y.; Wu, Q.-Y.; Xiao, Z.; Xiu, T.-Y.; Li, J.; Tang, H.-B.; Yuan, L.-Y.; Wu, W.-S.; Shi, W.-Q. Adv. Mater. 2024, 2414659. |
[90] | Wang, L.-Y.; Yu, J.-J.; Wang, S.; Liu, Y.; Song, K.-X.; Yu, J.-P.; Yuan, L.-Y.; Liu, Z.-R.; Shi, W.-Q. Chin. Chem. Lett. 2024, 110706. |
[91] | Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Nature 2023, 624, 80. |
[92] | Qiu, R.-Z.; Tang, J.; Chen, J.-F.; Liu, P.-C.; Wang, Q. Phys. Chem. Chem. Phys. 2024, 26, 14122. |
[93] | Zhao, J.-J. Physics 2024, 53, 450. (in Chinese) |
[93] | (赵纪军, 物理, 2024, 53, 450.) |
[94] | Lu, M.-Y.; Ji, H.-N.; Zhao, Y.; Chen, Y.-X.; Tao, J.-D.; Ou, Y.-Y.; Wang, Y.; Huang, Y.; Wang, J.-L.; Hao, G.-L. ACS Appl. Mater. Interfaces 2023, 15, 1871. |
[95] | Dangayach, R.; Jeong, N.; Demirel, E.; Uzal, N.; Fung, V.; Chen, Y.-S. Environ. Sci. Technol. 2025, 59, 993. |
[96] | Zhu, C.-L.; Bamidele, E. A.; Shen, X.-Y.; Zhu, G.-M.; Li, B.-W. Chem. Rev. 2024, 124, 4258. |
[97] | Liu, T.-Y.; Johnson, K. R.; Jansone-Popova, S.; Jiang, D.-E. JACS Au 2022, 2, 1428. |
[98] | Zhang, Z.-Y.; Cheng, M.; Xiao, X.-Y.; Bi, K.-X.; Song, T.; Hu, K.-Q.; Dai, Y.-Y.; Zhou, L.; Liu, C.; Ji, X.; Shi, W.-Q. ACS Appl. Mater. Interfaces 2022, 14, 33076. |
[99] | Wang, B.-B.; Zhang, Z.-Y.; Dong, Y.; Qiu, Y.-Q.; Ren, J.-Y.; Bi, K.-X.; Ji, X.; Liu, C.; Zhou, L.; Dai, Y.-Y. Inorg. Chem. 2023, 62, 13293. |
[100] | Zhang, Z.-Y.; Dong, Y.; Qiu, Y.-Q.; Bi, K.-X.; Hu, K.-Q.; Dai, Y.-Y.; Zhou, L.; Liu, C.; Ji, X.; Shi, W.-Q. J. Nucl. Radiochem. 2023, 45, 456. (in Chinese) |
[100] | (张智渊, 董越, 邱雨晴, 毕可鑫, 胡孔球, 戴一阳, 周利, 刘冲, 吉旭, 石伟群, 核化学与放射化学, 2023, 45, 456.) |
/
〈 |
|
〉 |