Construction of Three-dimensional Graphene/oxygen-enriched Vacancy Fe2O3 Composites to Realize Ultra-high Energy Density of Supercapacitors
Received date: 2024-12-17
Online published: 2025-02-19
Supported by
National Natural Science Foundation of China(22462023); Natural Science Foundation of Inner Mongolia(2020ZD17); Natural Science Foundation of Inner Mongolia(2021MS05011); basic research funds for universities directly under Inner Mongolia Autonomous Region(2023QNJS018); basic research funds for universities directly under Inner Mongolia Autonomous Region(2024YXXS038); Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region, China(NMGIRT2215)
Iron trioxide (Fe2O3) possesses the high theoretical capacitance, and the improvement of its deficiency of low electric conductivity can be performed by the oxygen vacancy engineering strategy. The combination of Fe2O3 with oxygen vacancies (OV-Fe2O3) and graphene with high conductivity is expected to obtain high energy density. In this study, the construction of three-dimensional reduced graphene oxide/OV-Fe2O3 (3D rGO/OV-Fe2O3) composite is completed through the complexation-reduction method under the hydrothermal reduction condition. The typical synthesis procedure is described as follows. First, 0.6 g of Fe(NO3)3•9H2O was dissolved into 15 mL of deionized water, then added 0.27 g of polyethylene glycol-2000, stirred for 10 min, and then added 12.5 mL of GO solution (8 mg•mL−1). After stirring the mixed solution for 20 min and ultrasonic vibration for 20 min, 2 mL of hydrazine hydrate was added into the mixing solution, and then stirred for 20 min and ultrasonically vibrated for 20 min again. Subsequently, the prepared mixed solution was transferred into a reactor for hydrothermal reaction. The reaction temperature was retained 180 ℃ for 12 h. After the hydrothermal reaction, the obtained sample was washed with deionized water and finally placed in a freeze dryer for 24 h to obtain the 3D rGO/OV-Fe2O3 composite. The nano-scaled OV-Fe2O3 shows the irregular geometric polyhedrons by the observation of morphology, which was uniformly distributed on the surface of 3D rGO or within the three-dimensional pores. The presence of oxygen vacancies is indicated via the X-ray diffraction pattern, electron paramagnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests manifest that the specific capacitance of 3D rGO/OV-Fe2O3 is as high as 928.3 F•g−1. The assembled asymmetric supercapacitor 3D rGO/OV-Fe2O3||3D rGO delivers an ultra-high energy density up to 95.1 Wh•kg−1. The capacitance retention rate is 94% after 20000 cycles. The ideal supercapacitive performance of 3D rGO/OV-Fe2O3||3D rGO is attributed to the improvement of the electrical conductivity of Fe2O3 due to the creation of oxygen vacancies in its lattice structure and the providing of three-dimensional conducting channels owing to the construction of 3D rGO. As supercapacitor electrode material, the 3D rGO/OV-Fe2O3 has a broad prospect.
Wei Sun , Guoxiang Xin , Fei Liu , Teng Ju , Yutong Cheng , Jinling Song , Jinxiao Bao , Chaoke Bulin . Construction of Three-dimensional Graphene/oxygen-enriched Vacancy Fe2O3 Composites to Realize Ultra-high Energy Density of Supercapacitors[J]. Acta Chimica Sinica, 2025 , 83(3) : 256 -265 . DOI: 10.6023/A24120372
[1] | Chen, Y. C.; Kang, C. X.; Ma, L.; Fu, L. K.; Li, G. H.; Hu, Q.; Liu, Q. M. Chem. Eng. J. 2021, 417, 129243. |
[1] | Kumar, R.; Thangappan, R.; Ran, F.; Sambasivam, S.; Albaqami, M. D.; Mohammad, S. J. Energy Storage 2024, 85, 111075. |
[2] | Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Nano Res. 2021, 14, 953. |
[3] | Li, X.; Li, X. Acta Chim. Sinica 2023, 81, 511 (in Chinese). |
[3] | (李西安, 李孝坤, 化学学报, 2023, 81, 511.) |
[4] | Mohite, D. D.; Chavan, S. S.; Dubal, S.; Karandikar, P. B. Chem. Soc. Rev. 2023, 13, 120703. |
[5] | Zhong, M.; Zhang, M.; Li, X. Carbon Energy 2022, 4, 950. |
[6] | Jacob, O. B.; Appiagyei, A. B.; Han, J. I. Ceram. Int. 2021, 47, 23665. |
[7] | Vigneshwaran, J.; Abraham, S.; Muniyandi, B.; Prasankumar, T.; Li, J. T.; Jose, S. Surf. Interfaces 2021, 27, 101572. |
[8] | Orisekeh, K.; Singh, B.; Olanrewaju, Y.; Kigozi, M.; Ihekweme, G.; Umar, S.; Anye, V.; Bello, A.; Parida, S.; Soboyejo, W. O. J. Energy Storage 2021, 33, 102042. |
[9] | Zhu, K.; Shi, F.; Zhu, X.; Yang, W. Nano Energy 2020, 73, 104761. |
[10] | Krishnan, A.; Ajay, R.; Anakha, J.; Namboothiri, U. S. K. Surf. Interfaces 2022, 30, 101942. |
[11] | Aalim, M.; Shah, M. A. Vacuum 2023, 210, 111903. |
[12] | Xiong, S. S.; Lin, X. M.; Liu, S.; Weng, S. T.; Jiang, S. Y.; Jiao, Y.; Xu, Y. C.; Cheng, J. R. Vacuum 2020, 182, 109692. |
[13] | Prakash, J.; Prema, D.; Venkataprasanna, K. S.; Balagangadharan, K.; Selvamurugan, N.; Venkatasubbu, G. D. Int. J. Biol. Macromol. 2020, 154, 62. |
[14] | Ma, X. T.; Wang, S.; Wang, H.; Ding, J. J.; Liu, S.; Huang, Z. X.; Sun, W. Z.; Liu, G. J.; Wang, L.; Xu, W. L. J. Energy Storage 2022, 56, 106034. |
[15] | Igarashi, D.; Tanaka, Y.; Kubota, K.; Tatara, R.; Maejima, H.; Hosaka, T.; Komaba, S. Adv. Energy Mater. 2023, 13, 2302647. |
[16] | Han, Y. J.; Wang, H. X.; Huang, D. M.; Wang, P. F.; Zhang, J. L.; Ren, X. B.; Meng, Y.; Lv, B. L. Appl. Surf. Sci. 2023, 638, 158056. |
[17] | Cao, Z. M.; Jiang, Z. W.; Cao, L. P.; Wang, Y.; Feng, C. H.; Huang, C. Z.; Li, Y. F. Talanta 2021, 221, 121616. |
[18] | Rahaman, S.; Raza, A.; Lone, A.; Muaz, M.; Zaidi, S.; Adeeb, M.; Sama, F.; Pandey, K.; Ahmad, A. Phys. Chem. Chem. Phys. 2024, 26, 16273. |
[19] | De Silva, K. K. H.; Huang, H. H.; Joshi, R.; Yoshimura, M. Carbon 2020, 166, 74. |
[20] | Huang, X. S.; Yin, R.; Qian, L.; Zhao, W.; Liu, H.; Liu, C. T.; Fan, J. C.; Hou, H.; Zhang, J. X.; Guo, Z. H. Ceram. Int. 2019, 45, 17784. |
[21] | Xin, G.; Zhai, Y.; Xing, Y.; Sun, W.; Liu, J.; Hu, W.; Song, J.; Bunlin, C.; Zhang, B.; Liu, X. J. Alloy. Compd. 2023, 945, 169345. |
[22] | Tan, Q. K.; Bao, S. C.; Kong, X. L.; Zheng, X.; Xu, Z. G.; Hu, Y. X.; Liu, X. H.; Wang, C.; Xu, B. H. J. Colloid. Interf. Sci. 2021, 590, 580. |
[23] | Zhang, M.; Sha, J.; Miao, X.; Liu, E.; Shi, C.; Li, J.; He, C.; Li, Q.; Zhao, N. J. Alloy. Compd. 2017, 696, 956. |
[24] | Wu, Y.; Pang, A.; Hu, L.; He, G.; Zhang, Y.; Zhang, L.; Li, M.; Ma, Z. Acta Chim. Sinica 2020, 78, 337 (in Chinese). |
[24] | (武艳, 庞爱民, 胡磊, 何根升, 张莹莹, 张利雄, 李明海, 马振叶, 化学学报, 2020, 78, 337.) |
[25] | Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2014, 136, 6826. |
[26] | Shin, Y.; Doh, K. Y.; Kim, S. H.; Lee, J. H.; Bae, H.; Song, S. J.; Lee, D. J. Mater. Chem. A 2020, 8, 4784. |
[27] | Xu, M.; Wang, A.; Xiang, Y.; Niu, J. J. Clean. Prod. 2021, 315, 128110. |
[28] | Song, Z.; Liu, W.; Wei, W.; Quan, C.; Sun, N.; Zhou, Q.; Liu, G.; Wen, X. J. Alloy. Compd. 2016, 685, 355. |
[29] | Liang, X. S.; Wang, L. S.; Wen, T. C.; Liu, H. J.; Zhang, J.; Liu, Z.; Zhu, C. Z.; Long, C. Sci. Total Environ. 2022, 804, 150161. |
[30] | Tang, X.; Jia, R. Y.; Zhai, T.; Xia, H. ACS Appl. Mater. Inter. 2015, 7, 27518. |
[31] | Yan, Y. Z.; Tang, H. L.; Wu, F.; Wang, R.; Pan, M. Energies 2017, 10, 1296. |
[32] | Arulkumar, E.; Thanikaikarasan, S. J. Alloy. Compd. 2024, 998, 175008. |
[33] | Wang, Y.; Zhang, M.; Pan, D.; Li, Y.; Ma, T.; Xie, J. Electrochim. Acta 2018, 266, 242. |
[34] | Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; Wang, C.; Zhang, X.; Miller, J. T.; Sun, L.; Hou, J. Nat. Commun. 2021, 12, 248289. |
[35] | Gogoi, R.; Singh, A.; Moutam, V.; Sharma, L.; Sharma, K.; Halder, A.; Siril, P. F. J. Environ. Chem. Eng. 2022, 10, 106649. |
[36] | Ahmad, I.; Ahmed, J.; Batool, S.; Zafar, M. N.; Hanif, A.; Zahidullah; Nazar, M. F.; Ul-Hamid, A.; Jabeen, U.; Dahshan, A.; Idrees, M.; Shehzadi, S. A. J. Alloy. Compd. 2022, 894, 162409. |
[37] | Zhang, L.; Fang, Q.; Huang, Y.; Xu, K.; Chu, P.; Ma, F. Anal. Chem. 2018, 90, 9821. |
[38] | Liu, J.; Chen, G.; Chen, Y.; Jiang, J.; Xiao, X.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2023, 81, 709 (in Chinese). |
[38] | (刘佳, 陈光海, 陈轶群, 江杰涛, 肖霄, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2023, 81, 709.) |
[39] | Wei, S.; Li, Z.; Meng, S.; Zhu, X.; Lu, X.; Su, Q.; Wang, Y. Acta Materiae Compositae Sinica 2023, 40, 5736 (in Chinese). |
[39] | (魏帅, 李朝霞, 孟淑娟, 朱星臣, 卢新宇, 苏琼, 王彦斌, 复合材料学报, 2023, 40, 5736.) |
[40] | Akbar, A. R.; Peng, G.; Li, Y.; Iqbal, R.; Saleem, A.; Wang, G.; Khan, A. S.; Ali, M.; Tahir, M.; Assiri, M. A.; Ali, G.; Liu, F. Small 2023, 19, 2304686. |
[41] | Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew. Chem. Int. Ed. 2021, 60, 21310. |
[42] | Wang, X.; Hao, C.; Zhang, J.; Ni, C.; Wang, X.; Shen, Y. J. Power Sources 2022, 539, 231594. |
[43] | Kim, J.; Jung, Y.; Kim, S. Carbon Lett. 2019, 29, 411. |
[44] | Zhang, Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Chem. Eng. J. 2022, 428, 131204. |
[45] | Gao, R.; Li, G.; Chen, Y.; Zeng, Y.; Zhao, J.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2021, 79, 755 (in Chinese). |
[45] | (高润洲, 李国昌, 陈轶群, 曾誉, 赵杰, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 755.) |
[46] | Wang, X.; Liu, J.; Hu, Y.; Ma, R.; Wang, J. Sci. China Mater. 2022, 65, 1421. |
[47] | Yan, S.; Luo, S.; Feng, J.; Li, P.; Guo, R.; Wang, Q.; Zhang, Y.; Liu, Y.; Bao, S. Chem. Eng. J. 2020, 381, 122695. |
[48] | Zhao, F.; Song, F.; Chen, Q. Appl. Surf. Sci. 2021, 561, 150063. |
[49] | Liu, W.; Zhu, M.; Liu, J.; Li, X.; Liu, J. Chinese Chem. Lett. 2019, 30, 750. |
[50] | Tian, S.; Zhang, B.; Han, D.; Gong, Z.; Li, X. Nanomaterials 2022, 12, 213819. |
[51] | Tian, Y.; Lin, L.; Chen, S.; Zhu, S.; Zhang, H.; Yu, W.; Ning, H.; Hu, N. J. Energy Storage 2021, 42, 103123. |
[52] | Zhang, D.; Shao, Y.; Kong, X.; Jiang, M.; Lei, X. Chem. Eng. J. 2018, 349, 491. |
[53] | Gholipour-Ranjbar, H.; Ganjali, M.; Norouzi, P.; Naderi, H. Ceram. Int. 2016, 42, 12097. |
/
〈 |
|
〉 |