The Indium-tin Bimetallic Modification Layer Synergistically Inhibited Zinc Dendrite Growth
Received date: 2024-12-31
Online published: 2025-03-03
Supported by
National Natural Science Foundation of China(22179011); Key Research and Development Programs in Tibet Autonomous Region(XZ202401ZY0104)
Aqueous zinc-ion batteries are considered as a promising candidate for future grid energy storage due to their cost-effectiveness, safety, and environmental compatibility, however their large scale application is impeded by the stability and longevity issues stemming from dendrite growth, and side reactions such as passivation and hydrogen evolution. Herein, an indium-tin bimetallic layer is introduced onto the Zn electrode surface via sequential vapor deposition of indium and tin, comprehensively utilizing the indium layer with higher hydrogen evolution overpotential and greater adsorption energy for Zn atoms, the Sn layer with lower Zn2+ migration barrier to synergistically inhibit Zn dendrites, corrosion and hydrogen evolution, and simultaneously facilitate rapid transport of Zn2+ at the interface. The thickness of In-Sn layer is determined to be only two hundred nanometers, which can not only efficiently protect Zn electrode but also avoid the energy loss due to the increase of Zn electrode resistance. Both the X-ray diffraction (XRD) peaks of In and Sn are detected, assuring the synergistical effect of In and Sn layer. The contact angle of 2.0 mol•L−1 ZnSO4 on Zn electrode decreases from 102.31° to 54.35° after coating In-Sn layer, decreasing the contact impedance between Zn electrode and electrolyte. The linear sweep voltammetry (LSV) results demonstrate the hydrogen evolution potential decreases from -1.776 V (pure Zn) to -1.979 V after coating In-Sn layer, indicating less hydrogen evolution and side reactions. The corrosion current density of Zn@In@Sn displays the smallest value of 0.868 mA•cm−2, compared with those of Zn (4.017 mA•cm−2) and Zn@In (3.515 mA•cm−2), demonstrating less corrosion. Consequently, the Zn@In@Sn electrode demonstrates an extended lifespan of up to 3000 h under low polarization of 40 mV at a current density of 1 mA•cm−2 and an areal capacity of 0.5 mAh•cm−2, obviously better than those of Zn@In (64 mV, 1500 h) and Zn@Sn (85 mV, 1600 h). The full cell using manganese dioxide as the cathode and Zn@In@Sn as the anode maintains approximately 127.9 mAh•g−1 after 1000 stable cycles at a current density of 1 A•g−1.
Ben Li , Yu Zhao , Xin Gao , Yuhan Sun , Baoyan Zhao , Qiaomei Luo , Xiaobing Bao , Lei Gou , Yanhua Cui , Xiaoyong Fan . The Indium-tin Bimetallic Modification Layer Synergistically Inhibited Zinc Dendrite Growth[J]. Acta Chimica Sinica, 2025 , 83(3) : 237 -301 . DOI: 10.6023/A24120389
[1] | Lee, J. H.; Kim, R.; Kim, S.; Heo, J.; Kwon, H.; Yang, J. H.; Kim, H. T. Energ. Environ. Sci. 2020, 13, 2839. |
[1] | Hao, J. N.; Yuan, L. B.; Johannessen, B.; Zhu, Y. L.; Jiao, Y.; Ye, C.; Xie, F. X.; Qiao, S. Z. Angew. Chem., Int. Ed. 2021, 60, 25114. |
[2] | Ruan, P. C.; Liang, S. Q.; Lu, B. G.; Fan, H. J.; Zhou, J. Angew. Chem., Int. Ed. 2022, 61, e202200598. |
[3] | Hu, X.; Zhao, Z.; Yang, Y.; Zhang, H.; Lai, G.; Lu, B.; Zhou, P.; Chen, L.; Zhou, J. InfoMat. 2024, 6, e12620. |
[4] | Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H. N. Mater. Sci. Eng. R-Rep. 2019, 135, 58. |
[5] | Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Energ. Environ. Sci. 2020, 13, 503. |
[6] | Chen, A. S.; Zhao, C. Y.; Guo, Z. K.; Lu, X. Y.; Liu, N. N.; Zhang, Y.; Fan, L. S.; Zhang, N. Q. Energy Storage Mater. 2022, 44, 353. |
[7] | Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Mater. Today Energy 2021, 20, 100692. |
[8] | Ji, H. M.; Xie, C. L.; Zhang, Q.; Li, Y. X.; Li, H. H.; Wang, H. Y. Acta Chim. Sinica 2023, 81, 29 (in Chinese). |
[8] | (姬慧敏, 谢春霖, 张旗, 李熠鑫, 李欢欢, 王海燕, 化学学报, 2023, 81, 29.) |
[9] | Huang, S.; Yuan, Z.; Salla, M.; Wang, X.; Zhang, H.; Huang, S.; Lek, D. G.; Li, X.; Wang, Q. Energ. Environ. Sci. 2023, 16, 438. |
[10] | Zhang, X.; Li, J.; Liu, Y.; Lu, B.; Liang, S.; Zhou, J. Nat. Commun. 2024, 15, 2735. |
[11] | Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Nat. Energy 2020, 5, 646. |
[12] | Zhou, Y.; Yuan, C.; Wang, S. J.; Zhu, Y. J.; Cheng, S.; Yang, X.; Yang, Y.; Hu, J.; He, J. L.; Li, Q. Energy Storage Mater. 2020, 28, 255. |
[13] | Yuan, L. B.; Hao, J. N.; Kao, C. C.; Wu, C.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Energ. Environ. Sci. 2021, 14, 5669. |
[14] | Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Nano-Micro Lett. 2022, 14, 42. |
[15] | Guo, X.; He, G. J. Mater. Chem. A 2023, 11, 11987. |
[16] | Zhou, J.; Shan, L. T.; Tang, B. Y.; Liang, S. Q. Chin. Sci. Bull. 2020, 65, 3562 (in Chinese). |
[16] | (周江, 单路通, 唐博雅, 梁叔全, 科学通报, 2020, 65, 3562.) |
[17] | Liang, G. J.; Zhu, J. X.; Yan, B. X.; Li, Q.; Chen, A.; Chen, Z.; Wang, X. Q.; Xiong, B.; Fan, J.; Xu, J.; Zhi, C. Y. Energ. Environ. Sci. 2022, 15, 1086. |
[18] | Long, X. T.; Liu, Y. Z.; Wang, D. X.; Nie, Y. H.; Lai, X. Y.; Luo, D.; Wang, X. J. Mater. Chem. A 2024, 12, 13181. |
[19] | Wang, M.; Wang, Q.; Yao, H.; Su, F.; Shan, Z.; Shen, H.; Liu, T.; Zhao, J.; Ding, C. J. Alloy. Compd. 2023, 947, 169678. |
[20] | Lu, K.; Jing, H.; Guo, Q.; Liu, C.; Liu, B.; Xia, X.; Wang, F.; Lei, W.; Xia, M.; Hao, Q. J. Energy Chem. 2024, 102, 37. |
[21] | Yang, Q.; Bang, G. J.; Guo, Y.; Liu, Z. X.; Yon, B. X.; Wang, D. H.; Huang, Z. D.; Li, X. L.; Fan, J.; Zhi, C. Y. Adv. Mater. 2019, 31, 1903778. |
[22] | Wang, A. R.; Zhou, W. J.; Huang, A. X.; Chen, M. F.; Tian, Q. H.; Chen, J. Z. J. Colloid Interf. Sci. 2021, 586, 362. |
[23] | Mao, C.; Chang, Y.; Zhao, X.; Dong, X.; Geng, Y.; Zhang, N.; Dai, L.; Wu, X.; Wang, L.; He, Z. J. Energy Chem. 2022, 75, 135. |
[24] | Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Adv. Energy Mater. 2018, 8, 1801090. |
[25] | Deng, C. B.; Xie, X. S.; Han, J. W.; Tang, Y.; Gao, J. W.; Liu, C. X.; Shi, X. D.; Zhou, J.; Liang, S. Q. Adv. Funct. Mater. 2020, 30, 2000599. |
[26] | Zhang, H.; Li, F.; Li, Z.; Gao, L.; Xu, B.; Wang, C. Batteries 2024, 10, 178. |
[27] | Hao, Z. T.; Zhao, J. F.; Li, H. T.; Li, Z.; Pan, L.; Li, J. Acta Chim. Sinica 2024, 82, 416 (in Chinese). |
[27] | (郝再涛, 赵健飞, 李慧同, 李展, 潘朗, 李江, 化学学报, 2024, 82, 416.) |
[28] | Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Adv. Funct. Mater. 2020, 30, 2001263. |
[29] | Khamsanga, S.; Uyama, H.; Nuanwat, W.; Pattananuwat, P. Sci. Rep. 2022, 12, 8689. |
[30] | Cui, M. W.; Xiao, Y.; Kang, L. T.; Du, W.; Gao, Y. F.; Sun, X. Q.; Zhou, Y. L.; Li, X. M.; Li, H. F.; Jiang, F. Y.; Zhi, C. Y. ACS Appl. Energy Mater. 2019, 2, 6490. |
[31] | Song, R.; Zhao, M. Q.; Wang, S.; Lu, Y; Bao, X. B.; Luo, Q. M.; Gou, L.; Fan, X. Y.; Li, D. L. Acta Chim. Sinica 2024, 82, 426 (in Chinese). |
[31] | (宋瑞, 赵铭钦, 王帅, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇, 李东林, 化学学报, 2024, 82, 426.) |
[32] | Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Adv. Funct. Mater. 2020, 30, 528. |
[33] | Du, W. C.; Ang, E. H. X.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Energ. Environ. Sci. 2020, 13, 3330. |
[34] | Wang, Y. Y.; Chen, Y. J.; Liu, W.; Ni, X. Y.; Qing, P.; Zhao, Q. W.; Wei, W. F.; Ji, X. B.; Ma, J. M.; Chen, L. B. J. Mater. Chem. A 2021, 9, 8452. |
[35] | Wu, P.; Xu, L. Y.; Xiao, X. M.; Ye, X. M.; Meng, Y. Z.; Liu, S. Adv. Mater. 2024, 36, 2306601. |
[36] | Wang, S.; Sun, Y. H.; Gao, X.; Song, R.; Zhao, M. Q.; Lu, Y.; Bao, X. B.; Luo, Q. M.; Gou, L.; Fan, X. Y. Chem. J. Chin. Univ. 2024, 45, 67 (in Chinese). |
[36] | (王帅, 孙雨涵, 高欣, 宋瑞, 赵铭钦, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇, 高等学校化学学报, 2024, 45, 67.) |
[37] | Li, B. Y.; Yang, K.; Ma, J. B.; Shi, P. R.; Chen, L. K.; Chen, C. M.; Hong, X.; Cheng, X.; Tang, M. C.; He, Y. B.; Kang, F. Y. Angew. Chem., Int. Ed. 2022, 61, e202212587. |
[38] | Han, W.; Zheng, X. D.; Yang, K.; Tsang, C. S.; Zheng, F. Y.; Wong, L. W.; Lai, K. H.; Yang, T. F.; Wei, Q.; Li, M. J.; Io, W. F.; Guo, F.; Cai, Y.; Wang, N.; Hao, J. H.; Lau, S. P.; Lee, C. S.; Ly, T. H.; Yang, M.; Zhao, J. Nat. Nanotechnol. 2023, 18, 55. |
[39] | Fan, X. Y.; Zhu, Y. Q.; Wu, Y.; Zhang, S.; Xu, L.; Gou, L.; Li, D. L. Chem. J. Chin. Univ. 2022, 43, 65 (in Chinese). |
[39] | (樊小勇, 朱永强, 毋妍, 张帅, 许磊, 苟蕾, 李东林, 高等学校化学学报, 2022, 43, 65.) |
[40] | Chen, M.; Gong, Y.; Zhao, Y.; Song, Y.; Tang, Y.; Zeng, Z.; Liang, S.; Zhou, P.; Lu, B.; Zhang, X.; Zhou, J. Natl. Sci. Rev. 2024, 11, nwae205. |
[41] | Meng, Y.; Wang, M.; Xu, J.; Xu, K.; Zhang, K.; Xie, Z.; Zhu, Z.; Wang, W.; Gao, P.; Li, X.; Chen, W. Angew. Chem. Int. Ed. 2023, 62, e202308454. |
[42] | Liu, W.; Zhao, Q. W.; Yu, H. M.; Wang, H.; Huang, S. Z.; Zhou, L. J.; Wei, W. F.; Zhang, Q. C.; Ji, X. B.; Chen, Y. J.; Chen, L. B. Adv. Funct. Mater. 2023, 33, 2302661. |
[43] | Xin, Y.; Qi, J.; Xie, H.; Ge, Y.; Wang, Z.; Zhang, F.; He, B.; Wang, S.; Tian, H. Adv. Funct. Mater. 2024, 34, 2403222. |
[44] | Luo, W.; Wang, Y.; Chou, S.; Xu, Y.; Li, W.; Kong, B.; Dou, S. X.; Liu, H. K.; Yang, J. Nano Energy 2016, 27, 255. |
[45] | Lin, J. H.; Chen, C.-Y. Surf. Coat. Tech. 2022, 436, 128270. |
/
〈 |
|
〉 |