Graphene/Titanium dioxide/Iron Phosphide Composite with Low Platinum Catalysts for Efficient Methanol Oxidation
Received date: 2024-01-14
Online published: 2024-04-14
Due to the strong synergistic effect and bifunctional mechanism, Fe-Ti bimetallic catalysts have shown excellent catalytic activity in electro-chemistry. In order to solve the catalyst problems of high cost, low anti-toxicity, and poor cycling stability, a simple hydrothermal and low-temperature phosphating method was explored to prepare the graphene/titanium dioxide/iron phosphide composite with low platinum contents (Pt@rGO/TiO2-FeP) for methanol battery anode. Through the cyclic voltammetry (CV), chronoamperometry (CA), and the multipotential step method (STEP), the methanol oxidation performance was effectively enhanced by the low-temperature phosphatization. When the Pt loading at 4.3% (w), the catalyst peak current density reached 2319.5 mA•mg−1, which was 5.9 times higher than that of the commercial Pt/C catalyst (390.5 mA•mg−1). With a series of characterization methods such as scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray electron diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), it was found that the titanium dioxide, iron phosphide and Pt nanoparticles were uniformly distributed on the surface of reduced graphene oxide (rGO). The methanol oxidation performance of this catalyst was improved because of the Fe-Ti bimetallic loading. The Pt@rGO/TiO2-FeP nanocomposites have excellent methanol oxidation performance and CO poisoning resistance, which provide a new idea and practice for the research and development of high-performance methanol fuel cells.
Zihang Wang , Jingwen Qian , Jiahui Xu , Haoyu Qiu , Menglong Yan , Yun Liu , Jie Luo , Yutai Sheng , Yi Chen , Xianbao Wang . Graphene/Titanium dioxide/Iron Phosphide Composite with Low Platinum Catalysts for Efficient Methanol Oxidation[J]. Acta Chimica Sinica, 2025 , 83(3) : 221 -228 . DOI: 10.6023/A24010013
| [1] | Zhu, Y.; Gao, L.; Li, J. Micromachines (Basel) 2019, 10, 386. |
| [2] | Zhu, P.; Zhang, Z.; Hao, S.; Zhang, B.; Zhao, P.; Yu, J.; Cai, J.; Huang, Y.; Yang, Z. Carbon 2018, 139, 477. |
| [3] | Zhou, M.; Weng, Q.; Zhang, X.; Wang, X.; Xue, Y.; Zeng, X.; Bando, Y.; Golberg, D. J. Mater. Chem. A 2017, 5, 4335. |
| [4] | Zhao, W.; Ma, L.; Gan, M.; Li, X.; Zhang, Y.; Hua, X.; Wang, L. J. Colloid Interface Sci. 2021, 604, 52. |
| [5] | Zhao, Q.; Zhu, Q.; Liu, Y.; Xu, B. Adv. Funct. Mater. 2021, 31, 56. |
| [6] | Zhang, X.; An, L.; Yin, J.; Xi, P.; Zheng, Z.; Du, Y. Sci. Rep. 2017, 7, 43590. |
| [7] | Zhang, W.; Dahbi, M.; Amagasa, S.; Yamada, Y.; Komaba, S. Electrochem. Commun. 2016, 69, 11. |
| [8] | Zhang, P.; Cai, Z.; You, S.; Wang, F.; Dai, Y.; Lv, Y.; Zhang, Y.; Ren, N.; Zou, J. ACS Sustainable Chem. Eng. 2020, 8, 10461. |
| [9] | Zhang, D.; Li, G.; Yu, M.; Fan, J.; Li, B.; Li, L. J. Power Sources 2018, 384, 34. |
| [10] | Yusoff, F.; Suresh, K.; Noorashikin, M. S. IOP Conference Series: Earth and Environmental Science. 2020, 463, 256. |
| [11] | Yuda, A.; Ashok, A.; Kumar, A. Catal. Rev. 2020, 64, 126. |
| [12] | Yuan, Z.; Chuai, W.; Guo, Z.; Tu, Z.; Kong, F. Micromachines (Basel). 2019, 10, 542. |
| [13] | Yu, J.; Cheng, G.; Luo, W. J. Mater. Chem. A 2017, 5, 15838. |
| [14] | Yin, H.; Zhang, C.; Liu, F.; Hou, Y. Adv. Funct. Mater. 2014, 24, 2930. |
| [15] | Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S. W.; Ninakanti, R.; Emin, S. ACS Appl. Energy Mater. 2021, 4, 10618. |
| [16] | Ye, S. H.; He, X. J.; Ding, L. X.; Pan, Z. W.; Tong, Y. X.; Wu, M.; Li, G. R. Chem. Commun. (Camb). 2014, 50, 12337. |
| [17] | Chen, R.-Y.; Zhen, S.-S.; Lin, Z.-L.; Liu, Y.-Q.; Wang, Z.-L. Acta Chim. Sinica 2021, 79, 1286 (in Chinese). |
| [17] | (陈日懿, 郑淞生, 林志彬, 刘运权, 王兆林, 化学学报, 2021, 79, 1286.) |
| [18] | Yao, F.; Bi, J.; Yu, L.; Dai, L.; Xue, W.; Deng, J.; Yao, Z.; Wu, Y.; Sun, J.; Zhu, J. Catal. Sci. Technol. 2023, 13, 3001. |
| [19] | Yang, Y.; Fu, W.; Bell, C.; Lee, D. C.; Drexler, M.; Nuli, Y.; Ma, Z. F.; Magasinski, A.; Yushin, G.; Alamgir, F. M. ACS Appl. Mater. Interfaces 2021, 13, 34074. |
| [20] | Yang, F.; Ma, L.; Gan, M.; Zhang, J.; Yan, J.; Huang, H.; Yu, L.; Li, Y.; Ge, C.; Hu, H. Syn. Metals 2015, 205, 23. |
| [21] | Sun, L.; Wang, H.-L.; Yu, J.-S.; Zhou, X.-G. Acta Chim. Sinica 2020, 78, 888 (in Chinese). |
| [21] | (孙炼, 王洪磊, 余金山, 周新贵, 化学学报, 2020, 78, 888.) |
| [22] | Ma, X.-L.; Li, M.; Lei, M. Acta Chim. Sinica 2023, 81, 84 (in Chinese). |
| [22] | (马雪璐, 李蒙, 雷鸣, 化学学报, 2023, 81, 84.) |
| [23] | Xie, D.; Xu, Y.; Wang, Y.; Pan, X.; Hark, E.; Kochovski, Z.; Eljarrat, A.; Muller, J.; Koch, C. T.; Yuan, J.; Lu, Y. ACS Nano 2022, 16, 10554. |
| [24] | Wu, X.; Wu, H. B.; Xiong, W.; Le, Z.; Sun, F.; Liu, F.; Chen, J.; Zhu, Z.; Lu, Y. Nano Energy 2016, 30, 217. |
| [25] | Wang, Z.; Fan, H.; Liang, H.; Ma, J.; Li, S.; Song, Y.; Wang, R. Electrochim. Acta 2017, 230, 245. |
| [26] | Wang, Y.; Wang, J.; Dong, J.; Tian, Y. Coatings 2023, 13, 74. |
| [27] | Wang, Y.; Lim, Y. V.; Huang, S.; Ding, M.; Kong, D.; Pei, Y.; Xu, T.; Shi, Y.; Li, X.; Yang, H. Y. Nanoscale 2020, 12, 4341. |
| [28] | Wang, X.; Wang, D.; Ma, C.; Yang, Z.; Yue, H.; Zhang, D.; Sun, Z. Chem. Eng. J. 2022, 427, 698. |
| [29] | Zhang, G.-Q.; Huo, J.-H.; Wang, X.; Guo, S.-W. Acta Chim. Sinica 2023, 81, 6 (in Chinese). |
| [29] | (张国强, 霍京浩, 王鑫, 郭守武, 化学学报, 2023, 81, 6.) |
| [30] | Su, Y.-Y.; Tang, L.; Liu, J.; Chen, H.; Zhao, Y, -K.; Liu, F. Precious Met. 2023, 44, 95 (in Chinese). |
| [30] | (栗云彦, 唐玲, 刘健, 陈慧, 赵云昆, 刘锋, 贵金属, 2023, 44, 95.) |
| [31] | Montiel, G.; Fuentes-Quezada, E.; Bruno, M. M.; Corti, H. R.; Viva, F. A. RSC Adv. 2020, 10, 30631. |
| [32] | Mohamed, H. O.; Obaid, M.; Poo, K.-M.; Ali Abdelkareem, M.; Talas, S. A.; Fadali, O. A.; Kim, H. Y.; Chae, K.-J. Chem. Eng. J. 2018, 349, 800. |
| [33] | Mishra, R.; Gupta, S.; Kumar, A.; Prakash, R. Mater. Chem. Phys. 2016, 183, 606. |
| [34] | Mathur, A.; Kushwaha, H. S.; Vaish, R.; Halder, A. RSC Adv. 2016, 6, 94826. |
| [35] | Gu, Y.-Y.; Yu, Y.-C.; Long, A.-C.; Ge, X.-L.; Song, Y.-K.; Meng, M.-F.; Hu, S.-H. Nonferrous Met. Mater. Eng. 2023, 44, 35 (in Chinese). |
| [35] | (顾颖颖, 于永昌, 龙安椿, 葛宪龙, 宋炎锴, 蒙敏凤, 胡少华, 有色金属材料与工程, 2023, 44, 35.) |
| [36] | Zhang, M.; Han, J.-X.; Wang, Y.-X.; Chen, Y.-L.; Ren, L.-X. Zhejiang Chem. Ind. 2023, 54, 7 (in Chinese). |
| [36] | (张曼, 韩继续, 王盈雪, 陈俞霖, 任立新, 浙江化工, 2023, 54, 7.) |
| [37] | Du, Y.; Weng, W.; Zhang, Z.; He, Y.; Xu, J.; Yang, T.; Bao, J.; Zhou, X. Chin. J. Chem. 2021, 39, 1878. |
| [38] | Guo, S.-Q.; Sun, Y.-X.; Li, C.-J. Chin. J. Mech. Eng. 2022, 44, 625 (in Chinese). |
| [38] | (郭仕权, 孙亚昕, 李从举, 工程科学学报, 2022, 44, 625.) |
| [39] | Li, Q.; Yuan, J.; Tan, Q.; Wang, G.; Feng, S.; Liu, Q.; Wang, Q. New J. Chem. 2020, 44, 5396. |
| [40] | Zhang, J.; Liang, P.-J.; Tang, M.-E.; Xu, X.-L.; Zhang, X.-M. J. Funct. Mater. 2023, 54, 5066 (in Chinese). |
| [40] | (张均, 梁平娟, 汤木娥, 许新兰, 张贤明, 动能材料, 2023, 54, 5066.) |
| [41] | Huang, Y.-F.; Xu, B.; Zeng, L.-W.; Lin, D.-H. J. Shanghai. Pol. Unive. 2023, 40, 1 (in Chinese). |
| [41] | (黄郁夫, 许波, 曾令文, 林东海, 上海第二工业大学学报, 2023, 40, 1.) |
| [42] | Baruah, B.; Kumar, A. Synthetic Metals 2018, 245, 74. |
| [43] | Zhang, Z.-F.; Tian, X.-Y.; Sun, H. Appl. Chem. Ind. 2023, 52, 2556 (in Chinese). |
| [43] | (张振峰, 田心瑶, 孙海, 应用化工, 2023, 52, 2556.) |
| [44] | Li, Y.; Hui, J.; Kawchuk, J.; O'Brien, A.; Jiang, Z.; Hoorfar, M. Fuel Cells 2019, 19, 43. |
| [45] | Li, X.; Deng, C.; Wang, H.; Si, J.; Zhang, S.; Huang, B. ACS Appl. Mater. Interfaces 2021, 13, 7297. |
/
| 〈 |
|
〉 |