Communication

Oxygen Vacancies in Pd/Pr-CeO2 Catalyst Regulate the Selectivity of CO Esterification to Dimethyl Carbonate

  • 徐梦鑫 ,
  • 杨智健 ,
  • 孙径 ,
  • 邹文强 ,
  • 徐忠宁 ,
  • 郭国聪
Expand
  • aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002;
    bUniversity of Chinese Academy of Sciences, Beijing 100049

Received date: 2025-02-02

  Online published: 2025-04-15

Supported by

National Key R&D Program of China (2021YFB3801600), National Natural Science Foundation of China (22172171), Natural Science Foundation of Fujian Province (2022H0039), Grant YLU-DNL Fund (2022010), and Program of Haixi Institutes (CXZX-2022-GH05).

Abstract

The resource characteristics of "oil-deficient, gas-deficient, and coal is relatively abundant" in China determine that coal-based CO esterification to dimethyl carbonate (DMC) is of great value. Pd(II)/NaY has been proved to be an effective catalyst for this reaction, but because the acidity of NaY molecular sieve causes partial decomposition of the raw material methyl nitrite, it is of great significance to develop non-molecular sieve catalysts. CeO2 is a commonly used oxide support. Because of its weak acidity, the decomposition problem of methyl nitrite is almost non-existent, but the selectivity to DMC over Pd/CeO2 catalyst is low. In order to improve the DMC selectivity, this work introduced different proportions of Pr into CeO2 carrier, in order to increase the oxygen vacancy concentration of CeO2, and then improve DMC selectivity. We synthesized Pd/Pr-CeO2-2.5, Pd/Pr-CeO2-5, Pd/Pr-CeO2-7.5, and Pd/Pr-CeO2-10 catalysts with different Pr doping ratios, and found that their DMC selectivity was significantly different. Pd/Pr-CeO2-5 catalyst showed the best DMC selectivity (77%). To explore the reasons for this difference, we performed a series of characterizations. Plasma emission spectroscopy (ICP) and transmission electron microscopy (TEM) demonstrated the successful doping of Pr into the support. By Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis, combined with catalytic performance, it is found that the selectivity to DMC is proportional to the concentration of oxygen vacancy. Through the characterization of hydrogen programmed temperature reduction (H2-TPR), it was found that the reduction temperature of Pd/Pr-CeO2-5 catalyst is the highest, indicating that Pd/Pr-CeO2-5 catalyst with the highest oxygen vacancy concentration also had the strongest metal-support interaction, which could stabilize Pd(II) active species. Therefore, the highest DMC selectivity is shown. The results of this work reveal the structure-activity relationship between the oxygen vacancy concentration of the oxide support and the selectivity of DMC, which has important guiding significance for the development of high-performance DMC catalysts in non-molecular sieve systems.

Cite this article

徐梦鑫 , 杨智健 , 孙径 , 邹文强 , 徐忠宁 , 郭国聪 . Oxygen Vacancies in Pd/Pr-CeO2 Catalyst Regulate the Selectivity of CO Esterification to Dimethyl Carbonate[J]. Acta Chimica Sinica, 0 : 0 -A25020035 . DOI: 10.6023/A25020035

References

[1] Otsuka K; Yagi T; Yamanaka I.Electrochim. Acta. 1994, 39, 2109-2115.
[2] Tundo P.; Selva M.Acc. Chem. Res. 2002, 35, 706-716.
[3] Yadav S.S.; Mali N.A.; Joshi S. S.; Chavan, P.V. J. Chem. Eng. Data.2017, 62, 2436-2442.
[4] Wei H.-M.; Wang, F; Zhang J.-L.; Liao B.; Zhao N.; Xiao F.-K.; Wei W.; Sun, Y.-H. Ind. Eng. Chem. Res.2013, 52, 11463-11478.
[5] Ehinon K. K.D.; Naille, S.; Dedryvère, R.; Lippens, P. E.; Jumas, J. C.; Gonbeau, D.Chem. Mater. 2008, 20, 5388-5398.
[6] Joho, F.; Novák, P.; Electrochim. Acta. 2000, 45, 589-599.
[7] Babad H.; Zeiler A.G. Chem. Rev.1973, 73, 75-91.
[8] Wang H.; Wang M.-H.; Zhang W.-Y.; Zhao N.; Wei W.; Sun Y.-H. Catal. Today.2006, 115, 107-110.
[9] Wu C.-H.; Zhao X.-Q.; Wang Y.-J. Petrochem. Techno.2004, 33, 508-541(in Chinese). (邬长城, 赵新强, 王延吉, 石油化工. 2004, 33, 508-511.)
[10] Bo X.-L.; Xia D.-K.; Qiu T.; Li P. Chem. Intermed.2006, 11, 23-28(in Chinese). (薄向利, 夏代宽, 邱添, 李萍. 化工中间体. 2006, 11, 23-28.)
[11] Delledonne D.; Rivetti F.; Romano, U. Appl. Catal. A-Gen.2001, 221, 241-251.
[12] Matsuzaki T.; Nakamura A.Catal. Surv. from Asia. 1997, 1,77-88.
[13] [13]Ge, Y.-D.; Dong, Y.-Y.; Wang, S.-P.; Zhao, Y.-J.; Lv, J.; Ma, X.-B.; Front. Chem. Sci. 2012, 6, 415-422.
[14] Lv D.-M.; Xu Z.-N.; Peng S.-Y.; Wang Z.-Q.; Chen Q.-S.; Chen Y.; Guo, G.-C. Catal. Sci. Technol.2015, 5, 3333-3339.
[15] Tan H.-Z.; Wang Z.-Q.; Xu Z.-N.; Sun J.; Chen Z.-N.; Chen Q.-S.; Chen Y.; Guo, G.-C. Catal. Sci. Technol.2017, 7, 3785-3790.
[16] Ji S.; Chen Y.; Zhao G.; Wang Y.; Sun W.; Zhang Z.; Lu Y.; Wang, D. Appl. Catal. B: Environ.2022, 304, 120922.
[17] Tan H.-Z.; Chen Z.-N.; Xu Z.-N.; Sun J.; Wang Z.-Q.; Si R.; Zhuang W.; Guo G.-C. ACS Catal.2019, 9, 3595-3603.
[18] Wu S.; Chen J.; Guo R.; Tong H.; Zong S.; Diao Z.; Qin Y.; Yao Y.Chem. Eng. J. 2024, 486.
[19] Hu S.; Xie C.; Xu Y.-P.; Chen X.; Gao M.-L.; Wang H.; Yang W.; Xu Z.-N.; Guo G.-C.; Jiang, H.-L. Angew. Chem. Int. Ed.2023, 62, e202311625.
[20] Han X.; Guo D.; Wang Y.; Huang S.; Wang M.-Y.; Wang Y.; Li M.; Wang S.; Ma X. ACS Catal.2024, 14 (13), 9812-9828.
[21] Wang C.-Z.; Xu N.; Huang K.; Liu B.; Zhang P.; Yang G.; Guo H.; Bai P.; Mintova, S. Chem. Eng. J.2023, 466, 143136.
[22] Wang C.-Z.; Xu W.; Qin Z.; Guo H.; Liu X.; Mintova, S. J. Energy Chem.2021, 52, 191-201.
[23] Jiang H.-B.; Lin S.-J.; Xu Y.-P.; Sun J.; Xu Z.-N.; Guo, G.-C. Acta Chim. Sinica.2022, 80, 438-443(in Chinese). (江辉波, 林淑娟, 徐玉平, 孙径, 徐忠宁, 郭国聪. 化学学报. 2022, 80, 438-443.)
[24] Zhang S.; Xia Z.-M.; Ni T.; Zhang Z.-Y.; Ma Y.-Y.; Qu Y.-Q.J. Catal. 2018, 359, 101-111.
[25] Bai S.-X.; Liu F.-F.; Huang B.-L.; Li F.; Lin H.-P.; Wu T.; Sun, M.-Z; Wu J.-B.; Shao Q.; Xu Y.; Huang X.-Q. Nat. Commun.2020, 11, 954.
[26] Liu J.-X.; Su Y.; Filot I. A.W.; Hensen, E. J. M.J. Am. Chem. Soc. 2018, 140, 4580-4587.
[27] Zhang S.; Chang C.-R.; Huang Z.-Q.; Li J.; Wu Z.; Ma Y.; Zhang Z.; Wang Y.; Qu Y.J. Am. Chem. Soc. 2016, 138, 2629-2637.
[28] Hu C.; Jing K.-Q.; Lin X.-Q.; Sun J.; Xu Z.-N.; Guo G.-C.Catal. Lett. 2022, 152, 503-512.
[29] [29]Li, J.-H.; Liu, Z.-Q.; Cullen, D. A.; Hu, W.-H.; Huang, J.-E.; Yao, L.-B.; Peng, Z.-M.; Liao, P.-L.; Wang, R.-G.; ACS Catal. 2019, 9, 11088-11103.
[30] Kim H. J.; Shin D.; Jeong H.; Jang M. G.; Lee H.; Han, J. W. ACS Catal.2020, 10, 14877-14886.
[31] Ahn K.; Yoo D. S.; Prasad D. H.; Lee H. W.; Chung Y.-C.; Lee J.-H.Chem. Mater. 2012, 24, 4261-4267.
[32] McBride J. R.; Hass K. C.; Poindexter B. D.; Weber, W. H. J. Appl Phys.1994, 76, 2435-2441.
[33] Jiang Z.-Y.; Jing M.-Z.; Feng X.-B.; Xiong J.-C.; He C.; Mark D.; Zheng L.-R.; Song W.-Y.; Liu J.; Qu, Z.-G. Appl. Catal. B Environ.2020, 278, 119304.
[34] Deng Y.-B.; Tian P.-F.; Liu S.-J.; He H.-Q.; Wang Y.; Ouyang L.; Yuan, S.-J. J. Hazard. Mater.2022, 426, 127793.
[35] Xiao Z.-R.; Li Y.-T.; Hou F.; Wu C.; Pan L.; Zou J.-J.; Wang L.; Zhang X.-W.; Liu G.-Z.; Li, G.-Z. Appl. Catal. B Environ.2019. 258, 117940.
Outlines

/