Recent Advances of Photoinduced Deoxygenative Functionalization of Alcohol Derivatives

  • Zhao Yu ,
  • Xing Tongtong ,
  • Duan Yurong ,
  • Zhao Quanqing
Expand
  • aCollege of Chemistry and Chemical Engineeringt, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, China;
    bJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005

Received date: 2025-02-27

  Online published: 2025-04-24

Supported by

National Natural Science Foundation of China (Nos. 22161047, 22301109), the Research Funds for Talent Introduction of Jiangsu Ocean University (No. KQ23065) and Lianyungang Haiyan Project (No. KK24005) for support of this research.

Abstract

Alcohols are the most wildly existent in nature, and one of promising chemical feedstocks, due to their cheap and easy availability. Half a century ago, the Barton-McCombie deoxygenation was discovered, and continued to be improved by organic synthetic chemists, becoming an important and rather broad fields in modern organic chemistry. In the last decade, visible-light-driven photoredox catalysis is a powerful tool in organic synthesis, and can realize a good deal of chemical transformations, because of its milder reaction condition, functional group tolerance, high efficiency and environmental-friendly characteristics. It has been reported direct deoxygenation of alcohol in the previous literatures, including the photochemical reactions and metal-transition catalytic systems. Herein, we summaried and discussed some significant advances since in 2014, about the deoxygenative functionalization of alcohol derivatives in photochemical synthetic reactions. And oxygen-containing derivatives of alcohol mainly includes carboxylic esters, oxalic esters, thiocarbonates and their derivatives, ethers and others. In this minireview, in terms of their structural properities, we went to classify and introduce the catalytic modes and mechanisms of deoxygenation, reaction universalities, advantages and shortcomings. In these advances, the oxygen-containing derivatives of alcohol could proceed single electron oxidation and reduction processes, hydrogen atom transfer (HAT), as well as radical addition process, as to assist the C–O bond cleavage to yield the key alkyl radical intermediates, subsequent functionalization to construct the newly C–C, C–N, C–O, C–S, C–X (halo) and C–B bonds. In addition, we also outlooked the challenges and opportunities in the field of deoxygenation of alcohols, and the application prospects of some compounds containing the hydroxy group in the future was discussed as well.

Cite this article

Zhao Yu , Xing Tongtong , Duan Yurong , Zhao Quanqing . Recent Advances of Photoinduced Deoxygenative Functionalization of Alcohol Derivatives[J]. Acta Chimica Sinica, 2025 : 25020057 . DOI: 10.6023/A25020057

References

[1] Hukumoto Y. Nature 1934, 134, 538.
[2] Chheda J. N.; Dumesic J. A.,Catal. Today, 2007, 123, 59.
[3] (a) Harrison, I. T.; Harrison, S., Wiley, Hoboken, NJ, 2006, 1, 329
(b) Harrison, I. T.; Harrison, S., Wiley, Hoboken, NJ, 2006, 1, 357.
[4] (a) Barton, D. H. R.; McCombie, S. W., J. Chem. Soc., Perkin Trans. I 1975, 1574.
(b) Hartwig, W., Tetrahedron 1983, 39, 2609
(c) McCombie, S. W., Pergamon, Oxford, 1991, 811.
(d) Herrmann, J. M.; König, B., Eur. J. Org. Chem. 2013, 2013, 7017.
[5] (a) McCombie, S. W.; Motherwell, W. B.; Tozer, M. J., Wiley, Hoboken, New Jersey, 2012, 77, 161.
(b) Chatgilialoglu, Ed. C., John Wiley & Sons Ltd, Chichester, 2004.
(c) Boivin, J.; Jrad, R.; Juge, S.; Nguyen, V. T., Org. Lett. 2003, 5, 1645.
(d) Ueng, S.-H.; Makhlouf-Brahmi, M.; Derat, E.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P., J. Am. Chem. Soc. 2008, 130, 10082.
(e) Ueng, S-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P., Org. Lett. 2010, 12, 300.
(f) Curran, D. P.; Solovyev, A.; Makhlouf-Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacôte, E., Angew. Chem. Int. Ed. 2011, 50, 10294.
(g) Boivin, J.; Nguyen, V. T., Beilstein J. Org. Chem. 2007, 3, 1.
[6] Chenneberg L.; Ollivier C., Chimia 2016, 70, 67.
[7] Recent advances for photoredox catalysis: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C., Chem. Rev. 2013, 113, 5322
(b) Meggers, E., Chem. Commun. 2015, 51, 3290
(c) Romero, N. A. and Nicewicz, D. A., Chem. Rev. 2016, 116, 10075
(d) Skubi, K. L.; Blum, T. R.; Yoon, T. P., Chem. Rev. 2016, 116, 10035
(e) Huang, H.; Jia, K.; Chen, Y., ACS Catal. 2016, 6, 4983
(f) Silvi, M.; Melchiorre, P., Nature. 2018, 554, 41
(g) Qiao, B.; Jiang, Z.; ChemPhotoChem 2018, 2, 703
(h) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B., Angew. Chem., Int. Ed. 2018, 57, 10034
(i) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J., Chem. Rev. 2021, 121, 506
(j) Zhao, Y.; Duan, Y. R.; Shi, S. H.; Bai, Y. B.; Huang, L. Z.; Yang, X. J.; Zhang, Y. T.; Feng, B.; Zhang, J. B.; Zhang, Q. Y., Chin. J. Org. Chem. 2023, 43, 4106
(k) Zhao, Q.-Q.; Chen, J.-R.; Xiao, W.-J., Attanasi, O., Noto, R., Spinelli, D., Eds. Italian Society of Chemistry, 2017, 202.
(l) Li, K. K.; Long, X. Y.; Huang, Y.; Zhu, S. F., Acta Chim. Sinica, 2024, 82, 658.
(m) Gui, C. M.; Zhou, T. Y.; Wang, H. F.; Yan, Q. J.; Wang, W.; Huang, J.; Chen, F. E., Chin. J. Org. Chem. 2023, 43, 2647.
[8] (a) Hu, X.-Q.; Hou, Y.-X.; Liu, Z.-K.; Gao, Y., Org. Chem. Front. 2020, 7, 2319.
(b) Maddigan‐Wyatt, J.; Hooper, J. F., Adv. Synth. Catal. 2021, 363, 924.
(c) Pan, D.; Nie, G.; Jiang, S.; Li, T.; Jin, Z., Org. Chem. Front. 2020, 7, 2349.
(d) Rossi-Ashton, J. A.; Clarke, A. K.; Unsworth, W. P.; Taylor, R. J. K., ACS Catal. 2020, 10, 7250.
(e) Shao, X. Q.; Zheng, Y.; Ramadoss, V.; Tian, L. F.; Wang, Y. H., Org. Biomol. Chem., 2020,18, 5994.
(f) Mandal, T.; Mallick, S.; Islam, M.; De Sarkar, S., ACS Catal. 2024, 14, 13451
(g) Roy, M.; Sardar, B.; Mallick, I.; Srimani, D., Beilstein J. Org. Chem. 2024, 20, 1348.
[9] Metal-transition catalyzed the C–O bond activation: (a) Bisz, E.; Szostak, M., ChemSusChem 2017, 10, 3865.
(b) Li, X.; Hong, X., J. Organomet. Chem. 2018, 864, 68.
(c) Pound, S. M.; Watson, M. P., Chem. Commun. 2018, 54, 12286.
(d) Hu, W. Q.; Pan, S.; Xu, X. H.; Vicic, D. A.; Qing, F. L., Angew. Chem. Int. Ed. 2020, 59, 16076.
(e) Zhou, T.; Szostak, M., Catal. Sci. Technol. 2020, 10, 5702.
(f) Zhang, S.-Q.; Hong, X., Acc. Chem. Res. 2021, 54, 2158.
(g) Diao, H. Y.; Shi, Z. J.; Liu, F., Synlett 2021, 32, 1494.
(h) Xu, J.; Bercher, O. P.; Talley, M. R.; Watson, M. P., ACS Catal. 2021, 11, 1604.
(i) Villo, P.; Shatskiy, A.; Kärkäs, M. D.; Lundberg, H., Angew. Chem. Int. Ed. 2022, 62, e202211952.
(j) Li, P.; Zhang, M.; Zhang, L., Topics Curr. Chem. 2024, 382:38.
(k) Jiang, N.-Q.; Ling, M.-M.; Xiao, L.-J.; Zhou, Q.-L., Angew. Chem. Int. Ed. 2024, 366, 3829.
(l) Li, M.-M.; Zhang, T.; Cheng, L.; Xiao, W.-G.; Ma, J.-T.; Xiao, L.-J.; Zhou, Q.-L., Nat. Commun. 2023, 14, 3326.
(m) Wang, G.-Y.; Ge, Z. L.; Ding, K. L.; Wang, X. M., Angew. Chem. Int. Ed. 2023, 21, e202307973.
(n) Yuan, F. Y.; Li, C.; Luo, M. M.; Zeng, X. M, Acta Chim. Sinica, 2023, 81, 456.
(o) Liu, L. Q.; Zhang, B.; Liu, Y.; Zhao, J. B.; Li, t.; Zhao, W. X., Chin. Chem. Lett., 2024, 35, 108631.
(p) Lin, L. L., Zhou, Y. Q.; Cao, W. D.; Dong, S. X.; Liu, X. H.; Feng, X. M., Sci. Sin. Chim., 2023, 53, 246.
[10] Rackl D.; Kais V.; Kreitmeier P.; Reiser O.,Beilstein J. Org. Chem. 2014, 10, 2157.
[11] Rackl D.; Kais V.; Lutsker E.; Reiser, a. O., Eur. J. Org. Chem. 2017, 2130.
[12] Speckmeier E.; Padié C.; Zeitler, K. Org. Lett. 2015, 17, 4818.
[13] Chen H. W.; Lu F. D.; Cheng Y.; Jia Y.; Lu L. Q.; Xiao, W. J., Chin. J. Chem. 2020, 38, 1671.
[14] (a) Lu, F.-D.; Shu, Z.-C.; He, G.-F.; Bai, J.-C.; Lu, L.-Q.; Xiao, W.-J., Org. Chem. Front. 2022, 9, 5259.
(b) Lu, F.-D.; Lu, L.-Q.; He, G.-F.; Bai, J.-C.; Xiao, W.-J., J. Am. Chem. Soc. 2021, 143, 4168.
(c) Yu, X.-Y.; Chen, J.; Chen, H.-W.; Xiao, W.-J.; Chen, J.-R., Org. Lett. 2020, 22, 2333.
[15] Kolusu S. R.N.; Nappi, M., Chem. Sci. 2022, 13, 6982.
[16] Wei Y.;Ben-zvi, B.; Diao, T., Angew. Chem. Int. Ed. 2021, 60, 9433.
[17] Li Z.; Wang L.; Zeng T.; Huang Z.; Song S.; Qi X.; Zhu, J. ACS Catal. 2024, 14, 9496.
[18] Wang Y.; Zhang S.; Zeng K.; Zhang P.; Song X.; Chen T. G.; Xia, G. Nat. Commun. 2024, 15, 6745.
[19] Barton D. H.R.; Crich, D. J. Chem. Soc., Perkin Trans. 1 1986, 1603.
[20] (a) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342.
(b) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E., J. Org. Chem. 2015, 80, 6012.
[21] Nawrat C. C.; Jamison C. R.; Slutskyy Y.; MacMillan, D. W. C.; Overman, L. E., J. Am. Chem. Soc. 2015, 137, 11270.
[22] Wang Q.; Yue L.; Bao Y.; Wang Y.; Kang D.; Gao Y.; Yuan Z.,J. Org. Chem. 2022, 87 , 8237.
[23] Zhang X.;MacMillan, D. W. C., J. Am. Chem. Soc. 2016, 138, 13862.
[24] (a) Pitre, S. P.; Muuronen, M.; Fishman, D. A.; Overman, L. E., ACS Catal. 2019, 9, 3413.
(b) Liu, G.; Mu, X.; Tian, M.; Wang, W.; Zou, C.; Chen, Y.; Yu, M., Eur. J. Org. Chem. 2023, 26, e202201491.
[25] (a) Guo, L.; Song, F.; Zhu, S.; Li, H.; Chu, L., Nat. Commun. 2018, 9, 4543.
(b) Li, H.; Guo, L.; Feng, X.; Huo, L.; Zhu, S.; Chu, L., Chem. Sci. 2020, 11, 4904.
[26] (a) Le Vaillant, F.; Waser, J. Chem. Sci. 2019, 10, 8909.
(b) Amos, S. G. E.; Waser, J. Chimia. 2022, 76, 312.
[27] Li M.; Liu T.; Li J.; He H.; Dai H.; Xie J.,J. Org. Chem. 2021, 86, 12386.
[28] Amos S. G.E.; Cavalli, D.; Le Vaillant, F.; Waser, J., Angew. Chem. Int. Ed. 2021, 60 , 23827.
[29] Kiyokawa K.; Watanabe T.; Fra L.; Kojima T.; Minakata S.,J. Org. Chem. 2017, 82, 11711.
[30] (a) Su, J. Y.; Grunenfelder, D. C.; Takeuchi, K.; Reisman, S. E., Org. Lett. 2018, 20, 4912.
(b) Brioche, J., Tetrahedron Lett. 2018, 59, 4387.
(c) Gonzalez-Esguevillas, M.; Miro, J.; Jeffrey, J. L.; MacMillan, D. W. C., Tetrahedron 2019, 75, 4222.
[31] Friese F. W.; Studer, A., Angew. Chem. Int.Ed. 2019, 58, 9561.
[32] Liu C.; Lin X.; An D.; Wang X.; Gao, Q., Org. Chem. Front. 2024, 11, 358.
[33] Liu Q.; Zheng J.; Zhang X.; Ma, S. Nat. Commun. 2022, 13, 3302.
[34] Chenneberg L.; Baralle A.; Daniel M.; Fensterbank L.; Goddard J. P.; Ollivier, C., Adv. Synth. Catal. 2014, 356, 2756.
[35] Vara B. A.; Patel N. R.; Molander, G. A., ACS Catal. 2017, 7, 3955.
[36] Wu J.; Bär R. M.; Guo L.; Noble A.; Aggarwal, V. K., Angew. Chem. Int.Ed. 2019, 58, 18830.
[37] Liu Z.-Y.; Cook, S. P., Org. Lett. 2021, 23, 808.
[38] Cai A.; Yan W.; Liu W.,J. Am. Chem. Soc. 2021, 143, 9952.
[39] Tan C. Y.; Kim M.; Park I.; Kim Y.; Hong, S., Angew. Chem. Int.Ed. 2022, 61, e202213857.
[40] Guo H.-M.; Wu, X. Nat. Commun. 2021, 12, 5365.
[41] Xia G.-D.; He Y.-Y.; Zhang J.; Liu Z.-K.; Gao Y.; Hu, X.-Q. Chem. Commun. 2022, 58, 6733.
[42] (a) Guo, H.-M.; He, B.-Q.; Wu, X., Org. Lett. 2022, 24, 3199.
(b) Zhang, W.; Ning, S.; Li, Y.; Wu, X., Chem. Commun. 2022, 58, 12843.
(c) Bao, W.-H.; Wu, X., J. Org. Chem. 2023, 88, 3975.
(d) Xiong, Y.; Zhang, Q.; Zhang, J.; Wu, X., J. Org. Chem. 2024, 89, 3629.
(e) Xiong, Y.; Wu, X., Org. Biomol. Chem. 2023, 21, 9316.
(f) Li, X.; Jiao, Y.; Han, L.; Sun, J.; Zhang, X., Org. Biomol. Chem. 2023, 21, 3330.
[43] Murakami M.; Ishida, N. Chem. Lett. 2017, 46, 1692.
[44] Wu F.; Wang L.; Chen J.; Nicewicz D. A.; Huang, Y., Angew. Chem. Int.Ed. 2018, 57, 2174.
[45] Xu W.; Ma J.; Yuan X. A.; Dai J.; Xie J.; Zhu, C., Angew. Chem. Int.Ed. 2018, 57, 10357.
[46] Ma J.; Xu W.; Xie, J., Sci. China Chem. 2020, 63, 187.
[47] Li Y.; Guo S.; Li Q.-H.; Zheng, K. Nat. Commun. 2023, 14. 6225.
[48] (a) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y., Angew. Chem. Int. Ed. 2015, 55, 1872.
(b) Zhang, J.; Li, Y.; Xu, R.; Chen, Y., Angew. Chem. In. Ed. 2017, 56, 12619.
[49] Cong F.; Lv X.-Y.; Day C. S.; Martin R.,J. Am. Chem. Soc. 2020, 142, 20594.
[50] Gao Y.; Liu J.; Wei C.; Zhang K.; Song L.; Cai, L. Nat. Commun. 2022, 13, 7450.
[51] Han J. B.; Guo A.; Tang, X. Y., Chem. Eur. J. 2019, 25, 2989.
[52] Yao S.; Zhang K.; Zhou Q.-Q.; Zhao Y.; Shi D.-Q.; Xiao, W.-J. Chem. Commun. 2018, 54, 8096.
[53] (a) Jiang, H.; Mao, G.; Wu, H.; An, Q.; Zuo, M.; Guo, W.; Xu, C.; Sun, Z.; Chu, W., Green Chem. 2019, 21, 5368
(b) Zhang, M.; Yuan, X. A.; Zhu, C.; Xie, J., Angew. Chem. Int. Ed. 2019, 58, 312.
(c) Sun, A. C.; McClain, E. J.; Beatty, J. W.; Stephenson, C. R. J., Org. Lett. 2018, 20, 3487.
(d) Zhao, Y.; Chen, J.-R.; Xiao, W.-J., Org. Lett. 2017, 20, 224.
(e) Zhao, F.; Jiang, F.; Wang, X., Sci. China Chem. 2022, 65, 2231.
Outlines

/