Recognition Performance of 3D Printed Eu-MOFs Hydrogel for Acetone and PNA

  • Zhu Yongchao ,
  • Chen Ziyi ,
  • Zhou Jun ,
  • Liang Wenjie ,
  • Xu Hai
Expand
  • aCollege of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Chemical Power Source, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety,Central South University, Changsha, Hunan 410083,China;
    bSchool of Chemistry, Xi'an Jiaotong University, Xi'an,Shaanxi 710049,China;
    cSchool of Mechanical Engineering, Guangxi University, Nanning,guangxi 430004,China

Received date: 2025-02-19

  Online published: 2025-05-23

Supported by

National Natural Science Foundation of China (No. 21975288).

Abstract

In this work, a stretch Eu-BTC MOFs hydrogel was synthesized in situ by high-resolution digital light processing(DLP) 3D printing technology for the detection and recognition of small molecule acetone and 4-nitroaniline (PNA). First, mix acrylamide (AAm), terephthalic acid (H3BTC) and polyethylene glycol diacrylate (PEGDA) at room temperature, then add 2,4,6-trimethylbenzoyl diphenyloxyphosphate (TPO) and methyl orange (MO), heat them to 60 ℃ in a dark environment and stir them evenly, then add acrylic acid (AA) and ammonia, stir them evenly to obtain hydrogel precursor solution, print and solidify them layer by layer from bottom to top through a high-resolution DLP printer (405nm ultraviolet light source) to obtain a 3D solid precursor model, wash the printed sample with ethanol, and remove the residual precursor solution from the surface. Finally, the UV cured hydrogel structure was immersed in the mixed solution of Eu (NO3)3·6H2O water/DMA (mass ratio 1:3) for 24 hours, where the concentration of Eu3+ was 1.0 M, allowing Eu3+to fully diffuse into the hydrogel matrix, and then Eu-BTC MOFs hydrogel was synthesized in situ. Then FT-IR, X-ray Powder diffraction, Elemental analysis and other characterizations were used to determine its structure and fluorescence performance, and Eu MOFs hydrogel was used to carry out fluorescence recognition tests on organic molecules such as methanol, ethanol, nitrobenzene, etc. The results showed that it could selectively recognize acetone and PNA, and the detection limits of acetone and PNA were 2.43 μL and 1.74 μM, respectively. The results show that the interaction between the hydrogel and the detected molecule is the root cause of fluorescence quenching.The Eu MOFs hydrogel obtained by this method can effectively avoid the problems of easy aggregation, difficult recovery, short shelf life and high application cost of powdered MOF materials in sensor applications.This material not only demonstrates its potential in the new field of optical sensing, but also provides a simple strategy for optimizing the macroscopic applications of MOF materials.

Cite this article

Zhu Yongchao , Chen Ziyi , Zhou Jun , Liang Wenjie , Xu Hai . Recognition Performance of 3D Printed Eu-MOFs Hydrogel for Acetone and PNA[J]. Acta Chimica Sinica, 0 : 1 -1 . DOI: 10.6023/A25020047

References

[1] Gao P.;Mukherjee S.;Zahid Hussain, M.;Ye, S.;Wang, X.;Li, W.;Cao, R. Chem. Eng. J. 2024, 492,152377.
[2] Wang F.-X.;Zhang Z.-C.;Wang C.-C.;Yi, X.-H.Yi, S. Sep. Purif. Technol. 2024, 337,126409.
[3] Song K.;Pan Y.-T.;Zhang J.;Song P.;He J.;Wang, D.-Y.Yang, R. Chem. Eng. J. 2023, 468,143653.
[4] Khan M. M.;Rahman A.Matussin,S. N. Nanomaterials 2022, 12,2820.
[5] He H.;Li R.;Yang Z.;Chai L.;Jin L.;Alhassan S. I.;Ren L. Catal. Today 2021, 375, 10.
[6] Dhakshinamoorthy A.;Asiri, A. M.García, H. Angew.Chem., Int. Ed. 2016, 55, 5414.
[7] Baig U.;Waheed A.Jillani,S. M. S. Chem Asian J. 2023, 19,e202300619.
[8] Lin G.;Zeng B.;Li J.;Wang Z.;Wang S.;Hu T.Zhang,L. Chem. Eng. J. 2023, 460,141710.
[9] Guo X.;Wang L.;Wang L.;Huang Q.;Bu L.Wang,Q. Front. Chem. 2023, 11,1116524.
[10] Mohammed Ameen, S. S.Omer, K. M. ACS Appl. Mater. Interfaces 2024, 16, 31895.
[11] Zhang S.;Xiao J.;Zhong G.;Xu T.Zhang,X. Analyst 2024, 149, 1381.
[12] Sule R.;Mishra, A. K.Nkambule, T. T. Int. J.Energy Res. 2021, 45, 12481.
[13] Suganthi S.;Ahmad K.Oh,T. H. Molecules 2024, 29,5373.
[14] Mhettar P.;Kale N.;Pantwalawalkar J.;Nangare S.Jadhav,N. ADMET DMPK 2023,12,27.
[15] Jin J.;Xue J.;Liu Y.;Yang G.Wang,Y.-Y. Dalton Trans. 2021, 50, 1950.
[16] Han, C. Q.Liu, X. Y. Angew. Chem., Int. Ed. 2024, 64.
[17] Li B.;Zhao D.;Wang F.;Zhang X.;Li W.Fan,L. Dalton Trans. 2021, 50, 14967.
[18] Jie B.;Lin H.;Zhai Y.;Ye J.;Zhang D.;Xie Y.;Zhang X. Chem. Eng. J. 2023, 454,139931.
[19] Liang,D.P.;Feng,L.Y.;Lu,X.Y.;Peng,D.B.;Zhang T.W. Technol. Dev. Chem.Ind. 2024,53,1 (in Chinese).
(梁冬萍, 冯莉源, 陆昕妍, 彭定柏, 张桐玮, 化工技术与开发,2024,53,1.)
[20] Sun T.;Gao Y.;Du Y.;Zhou L.Chen,X. Front. Chem. 2021, 8,624592.
[21] Zhao S.-N.;Wang G.;Poelman D.Voort,P. Materials 2018, 11,572.
[22] Dong C.-L.;Li M.-F.;Yang T.;Feng L.;Ai Y.-W.;Ning Z.-L.;Liu M.-J. Rare Metals 2020, 40, 505.
[23] Feng L.;Dong C.;Li M.;Li L.;Jiang X.;Gao R.;Wang R. J. Hazard. Mater. 2020, 388,121816.
[24] Liu Q.;Hu X.;Dong X.;Liu P.;Zhang N.;Gao Z.;Wang W.Food Chem. 2024, 454,139756.
[25] Gao,Y.;Li,M.;Yu,R.;Zhou,Z.H.;Gao,Y.;Jiang,R.L.;Zhang,J.X.Chin. Rare Earths 2024,45,80 (in Chinese).
(高源, 李猛, 于睿, 周子涵, 高禹, 蒋荣立, 张吉雄, 稀土,2024,45,80.)
[26] Wei,J.X.;Wang,H.;Gu,Q.Y.Chin. J. Inorg. Anal. Chem. 2023.13,790 (in Chinese).
(魏佳欣, 王浩, 谷庆阳, 中国无机分析化学,2023,13,790.)
[27] Liu,W.S.;Chen,x.y.;Zhi,W.K.;Wang,X.Q.;Wang,F.Mater. Rep. 2023,37,21030231-1 (in Chinese).
(刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞,材料导报,2023,37,21030231-1.)
[28] Zhao L.-J.;Li B.Yong,G.-P. CrystEngComm 2023, 25, 2813.
[29] Rao P. A.;Padhy H.;Bandyopadhyay K.;Rao A. V.;Ganta R.;Bevara S.;Singh B. P. J. Fluoresc. 2024.
[30] Ahlawat D.;Pachisia S.;AashishGupta, R. Chem Asian J. 2025,e202401213.
[31] Murphy R. D.;Cosgrave M.;Judge N.;Tinajero‐Diaz, E.;Portale, G.;Wu, B.Heise, A. Small 2024, 20,2405578.
[32] Zhang J.;Hu Q.;Wang S.;Tao J.Gou,M. Int. J. Bioprinting 2019, 6.
[33] Chaudhary R.;Akbari R.Antonini,C. Polymers 2023, 15,287.
[34] Xu F.;Jin H.;Wu H.;Jiang A.;Qiu B.;Liu L.;Gao Q. Scientific Reports 2024, 14,15695.
[35] Lu X.;Li Y.-F.;Wang C.-L.;Gao J.-Y.;Zhou Y.Zhang,C.-L. Inorg. Chem. Front. 2024, 11, 5685.
[36] Xing B.-B.;Wang Y.-S.;Zhang T.;Liu J.-Y.;Jiao H.Xu,L. Mater. Adv. 2025, 6, 756.
[37] Cho I.;Kang, J.-G.Sohn Y. J.Lumin. 2015, 157, 264.
[38] Cui H.;Zhu P.-F.;Zhu H.-Y.;Li, H.-D.Cui, Q.-L. Chin. Phys. B 2014, 23,057801.
[39] Gupta B. K.;Haranath D.;Saini S.;Singh, V. N.Shanker V. Nanotechnology 2010, 21,055607.
[40] Gao L.;Jiao C.;Chai H.;Ren Y.;Zhang G.;Yu H.Tang,L. J. Solid State Chem. 2020, 284,121199.
[41] Yang Y.;Chen L.;Jiang F.;Wu M.;Pang J.;Wan X.Hong,M. CrystEngComm 2019, 21, 321.
[42] Zhang J.;Peh S. B.;Wang J.;Du Y.;Xi S.;Dong J.;Karmakar A. Chem.Commun. 2019, 55, 4727.
[43] Wang J.;Wang J.;Wu J.;Li Y.;Zheng L.Lin,Y.-Y. Inorg. Chem. Commun. 2020, 120,108167.
[44] Zuo H.;Li Y.Liao,Y. ACS Appl. Mater. Interfaces 2019, 11, 39201.
[45] Xu L.;Xu Y.;Li X.;Wang Z.;Sun T.Zhang,X. Dalton Trans. 2018, 47, 16696.
[46] Wang J.;Wang J.;Li Y.;Jiang M.;Zhang L.Wu,P. New J. Chem. 2016, 40, 8600.
[47] Wang J.-J.;Si P.-P.;Yang J.;Zhao S.-S.;Li P.-P.;Li B.;Wang S.-Y. Polyhedron 2019, 162, 255.
[48] Mahalakshmi, G.Balachandran, V. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2014, 124, 535.
[49] Zhu Y.;Chen Z.;Wang C.;Yao S. X.;Jin Q.;Zhou J.;Li P. ChemistrySelect 2024, 9,e202402571.
Outlines

/