Review

Boron-Containing Nonbenzenoid Polycyclic Aromatic Hydrocarbons

  • Yuan Liuzhong ,
  • Sun Wenting ,
  • Dou Chuandong
Expand
  • State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012
† These authors contributed equally to this work

Received date: 2025-05-09

  Online published: 2025-06-19

Supported by

Name of Foundation (foundation number).

Abstract

Doping heteroatoms (B, N, O, S, P) into polycyclic aromatic hydrocarbons (PAHs) has been developed as an efficient strategy to achieve intriguing electronic structures and optoelectronic properties. In particular, boron-containing non-benzenoid PAHs are a class of conjugated polycyclic π systems that combine the boron atoms and non-benzenoid motifs, such as pentagon and heptagon rings. These molecules not only possess wonderful topological structures, but also have electronic structures and physicochemical properties that are obviously different from those of traditional carbon-based PAHs. Owing to these characteristics, they have exhibited great potential applications in optoelectronic devices, including organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). However, the high reactivity and sensitivity of boron atoms to moisture and oxygen leads to severe limitations in design and synthetic methods, and difficulty in construction of boron-containing π-systems. Thus, following the design strategies for enhancing the stability of the boron atom by introducing bulky substituents or utilizing structural constraint and the efficient synthetic approaches, a series of boron-containing non-benzenoid PAHs, including boron/nitrogen-type, boron/oxygen-type, boron/sulfur-type and pristine boron-doped systems, have been dramatically developed. These molecules not only possess intriguing topological structures and excellent stability, but also exhibit fascinating optoelectronic properties, such as thermally activated delayed fluorescence, reversible redox capabilities and magnetic properties. Moreover, they exhibit sufficient Lewis acidity, enabling them to coordinate with Lewis bases to form Lewis acid-base adducts, thus achieving stimuli-responsive functions. Therefore, the precise introduction of boron atoms into polycyclic structures to construct boron-containing non-benzenoid PAH systems and fine modulation of physical properties and functions has become the key topic in the research fields of PAHs, organoborane chemistry and organic functional materials. In this review, we aim to highlight the design and synthetic strategies of boron-containing non-benzenoid PAHs, along with their intriguing electronic structures, physical properties and practical applications. Additionally, the synthesis challenges and future development opportunities of these molecules are analyzed and prospected.

Cite this article

Yuan Liuzhong , Sun Wenting , Dou Chuandong . Boron-Containing Nonbenzenoid Polycyclic Aromatic Hydrocarbons[J]. Acta Chimica Sinica, 0 : 25050149 -25050149 . DOI: 10.6023/A25050149

References

[1] Narita A.; Wang X.; Feng X.; Müllen K. Chem. Soc. Rev.2015, 44, 6616.
[2] Itami K.; Maekawa T.Nano Lett. 2020, 20, 4718.
[3] Segawa Y.; Ito H.; Itami K.Nat. Rev. Mater. 2016, 1, 15002.
[4] Liu J.; Feng X.Angew. Chem. Int. Ed. 2020, 59, 23386.
[5] Wang M.; Fan W.; Li X.; Liu Y.; Li Z.; Jiang W.; Wu J.; Wang Z. ACS Nano. 2023, 17, 20734.
[6] Zeng W.; Wu J. Chem2021, 7, 358.
[7] Kubo T. Chem. Rec. 2015, 15, 218.
[8] Y. Gopalakrishna T.; Zeng W.; Lu X.; Wu J.Chem. Commun. 2018, 54, 2186.
[9] Guo J.; Tian X.; Wang Y.; Dou C. Chem. Res. Chin. Univ.2023, 39, 161.
[10] Hackney H. E.; Perepichka D. F. Aggregate.2022, 3, e123.
[11] Wu J.; Pisula W.; Müllen K. Chem. Rev. 2007, 107, 718.
[12] Kirschbaum T.; Rominger F.; Mastalerz M. Angew. Chem. Int. Ed.2020, 59, 270.
[13] Kawasumi K.; Zhang Q.; Segawa Y.; Scott L. T.; Itami K. Nat. Chem. 2013, 5, 739.
[14] Majewski M. A.; Stępień M. Angew. Chem. Int. Ed.2019, 58, 86.
[15] Pun S. H.; Miao Q. Acc. Chem. Res.2018, 51, 1630.
[16] Zank S.; Fernández-García J. M.; Stasyuk A. J.; Voityuk A. A.; Krug M.; Solà M.; Guldi D. M.; Martín N. Angew. Chem. Int. Ed.2022, 61, e202112834.
[17] Pun S. H.; Chan C. K.; Liu Z.; Miao Q. Org. Mater. 2020, 02, 248.
[18] Fei Y.; Liu J. Adv. Sci. 2022, 9, 2201000.
[19] Grzybowski M.; Sadowski B.; Butenschön H.; Gryko D. T. Angew. Chem. Int. Ed.2020, 59, 2998.
[20] Chen M.; Duan Y.; Liu X.; Zhan Q.; Hayashi H.; Matsuo K.; Yamada H.; Gao G.; Zheng Y.; Zhang L.CCS Chem. 2023, 6, 353.
[21] Qin L.; Huang Y.; Wu B.; Pan J.; Yang J.; Zhang J.; Han G.; Yang S.; Chen L.; Yin Z.; Shu Y.; Jiang L.; Yi Y.; Peng Q.; Zhou X.; Li C.; Zhang G.; Zhang X.; Wu K.; Zhang D. Angew. Chem. Int. Ed. 2023, 62, e202304632.
[22] Wang J.; Gámez F. G.; Marín-Beloqui J.; Diaz-Andres A.; Miao X.; Casanova D.; Casado J.; Liu J. Angew. Chem. Int. Ed.2023, 62, e202217124.
[23] Hayakawa S.; Kawasaki A.; Hong Y.; Uraguchi D.; Ooi T.; Kim D.; Akutagawa T.; Fukui N.; Shinokubo H.J. Am. Chem. Soc. 2019, 141, 19807.
[24] Ogawa N.; Yamaoka Y.; Takikawa H.; Yamada K.; Takasu K. J. Am. Chem. Soc.2020, 142, 13322.
[25] Cheung K. M.; Xiong Y.; Pun S. H.; Zhuo X.; Gong Q.; Zeng X.; Su S.; Miao Q. Chem2023, 9, 2855.
[26] Yu F.; Jiao F.; Liu P.; Wu Y.; Lu L.; Zhang S.; Zhang C.; Cui G.; Wang X.; Yao J.; Fu H. CCS Chem. 2024, Just Published. DOI: 10.31635/ccschem.024.20240427.
[27] Wang X.; Yao X.; Narita A.; Müllen K. Acc. Chem. Res.2019, 52, 2491.
[28] Fei Y.; Fu Y.; Bai X.; Du L.; Li Z.; Komber H.; Low K.; Zhou S.; Phillips D.L.; Feng X.; Liu J.J. Am. Chem. Soc. 2021, 143, 2353.
[29] Wu F.; Ma J.; Lombardi F.; Fu Y.; Liu F.; Huang Z.; Liu R.; Komber H.; Alexandropoulos D. I.; Dmitrieva E.; Lohr T. G.; Israel N.; Popov A. A.; Liu J.; Bogani L.; Feng X. Angew. Chem. Int. Ed.2022, 61, e202202170.
[30] Duan Y.; Chen M.; Hayashi H.; Yamada H.; Liu X.; Zhang L. Chem. Sci. 2023, 14, 10420.
[31] Luo H.; Liu J. Angew. Chem. Int. Ed.2024, 63, e202410759.
[32] An P.; Li R.; Ma B.; He R.; Zhang Y.; Xiao M.; Zhang B. Angew. Chem. Int. Ed.2021, 60, 24478.
[33] Hirai M.; Tanaka N.; Sakai M.; Yamaguchi S.Chem. Rev. 2019, 119, 8291.
[34] Takase M.; Narita T.; Fujita W.; Asano M.S.; Nishinaga T.; Benten H.; Yoza K.; Müllen K.J. Am. Chem. Soc. 2013, 135, 8031.
[35] Yokoi H.; Hiraoka Y.; Hiroto S.; Sakamaki D.; Seki S.; Shinokubo H.Nat. Commun. 2015, 6, 8215.
[36] Borissov A.; Maurya Y. K.; Moshniaha L.; Wong W.; Żyła-Karwowska M.; Stępień M. Chem. Rev. 2022, 122, 565.
[37] Larrañaga O.; Romero-Nieto C.; de Cózar, A. Chem. - Eur. J.2017, 23, 17487.
[38] Ito S.; Tokimaru Y.; Nozaki K. Angew. Chem. Int. Ed.2015, 54, 7256.
[39] Feng J.; Wu Y.; Yu Q.; Liu Y.; Jiang W.; Wang D.; Wang Z. CCS Chem. 2020, 2, 271.
[40] Nowak-Król A.; Würthner F. Org. Chem. Front.2019, 6, 1272.
[41] Ratera I.; Veciana J. Chem. Soc. Rev.2012, 41, 303.
[42] Yang X.; Elbert S. M.; Rominger F.; Mastalerz M. J. Am. Chem. Soc.2022, 144, 9883.
[43] Zhou F.; Huang Z.; Huang Z.; Cheng R.; Yang Y.; You J. Org. Lett. 2021, 23, 4559.
[44] Lin H.; Kato K.; Segawa Y.; Scott L. T.; Itami K. Chem. Sci. 2019, 10, 2326.
[45] Yang Y.; Chu M.; Miao Q. Org. Lett. 2018, 20, 4259.
[46] Xiao Q.; Sakurai T.; Fukino T.; Akaike K.; Honsho Y.; Saeki A.; Seki S.; Kato K.; Takata M.; Aida T. J. Am. Chem. Soc.2013, 135, 18268.
[47] von Grotthuss E.; John A.; Kaese T.; Wagner M. Asian J. Org. Chem.2018, 7, 37.
[48] Yuan L.; Guo J.; Yang Y.; Ye K.; Dou C.; Wang Y. CCS Chem. 2022, 5, 876.
[49] Escande A.; Ingleson M.J.Chem. Commun. 2015, 51, 6257.
[50] Ji L.; Griesbeck S.; Marder T. B. Chem. Sci.2017, 8, 846.
[51] Huang Z.; Wang S.; Dewhurst R. D.; Ignat'ev N. V.; Finze M.; Braunschweig H. Angew. Chem. Int. Ed.2020, 59, 8800.
[52] Chen C.; Guo Y.; Chang Z.; Müllen K.; Wang X. Nat. Commun. 2024, 15, 8555.
[53] Fan Z.; Sun W.; Yang Y.; Guo J.; Dou C.; Wang Y. Chin. Chem. Lett.2023, 34, 107729.
[54] Sun W.; Guo J.; Fan Z.; Yuan L.; Ye K.; Dou C.; Wang Y. Angew. Chem. Int. Ed.2022, 61, e202209271.
[55] Tian X.; Fan Z.; Li Z.; Zhang S.; Li Z.; Zhuang X.; Wang Y.; Dou C.Angew. Chem. Int. Ed. 2025, e202500110.
[56] Basak S.; Winfrey L.; Kustiana B.A.; Melen R. L.; Morrill L. C.; Pulis A. P.Chem. Soc. Rev. 2021, 50, 3720.
[57] Farrell J. M.; Mützel C.; Bialas D.; Rudolf M.; Menekse K.; Krause A.; Stolte M.; Würthner F. J. Am. Chem. Soc.2019, 141, 9096.
[58] Zou Y.; Sun W.; Xun J.; Liang Q.; Chen L.; Diao T.; Shi J.; Wu D.; Dou C.; Hong W.; Tian Z.; Yang Y.Angew. Chem. Int. Ed. 2025, 64, e202415940.
[59] Liu Y.; Yuan L.; Guo J.; Sun W.; Wang Y.; Dou C. Angew. Chem. Int. Ed.2023, 62, e202306911.
[60] Yuan L.; Yang J.; Qi S.; Liu Y.; Tian X.; Jia T.; Wang Y.; Dou C.Angew. Chem. Int. Ed. 2023, 62, e202314982.
[61] Narita H.; Choi H.; Ito M.; Ando N.; Ogi S.; Yamaguchi S.Chem. Sci. 2022, 13, 1484.
[62] Xia Y.; Zhang M.; Ren S.; Song J.; Ye J.; Humphrey M.G.; Zheng C.; Wang K.; Zhang X.Org. Lett. 2020, 22, 7942.
[63] Zhou Z.; Wakamiya A.; Kushida T.; Yamaguchi S. J. Am. Chem. Soc.2012, 134, 4529.
[64] Fan Z.; Liu Y.; Zhang T.; Wang Y.; Dou C.CCS Chem. 2024, 7, 256.
[65] Yuan L.; Wang Y.; Dou C. Org. Mater. 2023, 5, 191.
[66] Tian X.; Guo J.; Li Z.; Sheng S.; Zhang T.; Li X.; Dou C. Chin. Chem. Lett.2025, 36, 110174.
[67] Guo J.; Li Z.; Zhang T.; Tian X.; Wang Y.; Dou C. Chin. Chem. Lett.2024, 35, 109337.
[68] Yang W.; Li N.; Miao J.; Zhan L.; Gong S.; Huang Z.; Yang C. CCS Chem. 2022, 4, 3463.
[69] Sun W.; Yang Y.; Tian X.; Yuan L.; Wang Y.; Dou C. Chem. - Eur. J.2023, 29, e202302459.
[70] Araneda J. F.; Neue B.; Piers W. E. Angew. Chem. Int. Ed.2012, 51, 9977.
[71] Wang X.; Narita A.; Feng X.; Müllen K. J. Am. Chem. Soc.2015, 137, 7668.
[72] Nakatsuka S.; Yasuda N.; Hatakeyama T. J. Am. Chem. Soc.2018, 140, 13562.
[73] Yang D.; Nakamura T.; He Z.; Wang X.; Wakamiya A.; Peng T.; Wang S. Org. Lett. 2018, 20, 6741.
[74] Duan C.; Zhang J.; Xiang J.; Yang X.; Gao X.Acta Chim. Sinica 2022, 80, 29 (in Chinese).
(段超, 张建伟, 向焌钧, 杨笑迪, 高希珂, 化学学报, 2022, 80, 29.)
[75] Xu Y.; Wang Q.; Cai X.; Li C.; Jiang S.; Wang Y. Angew. Chem. Int. Ed.2023, 62, e202312451.
[76] Wang Y.; Shao S.; Wang L. Acta Chim. Sinica 2023, 81, 1202 (in Chinese).
(王一诺, 邵世洋, 王利祥, 化学学报, 2023, 81, 1202.)
[77] Mamada M.; Hayakawa M.; Ochi J.; Hatakeyama T.Chem. Soc. Rev. 2024, 53, 1624.
[78] Zhang Y.; Du C.; Li J.; Wang X. Chin. J. Org. Chem.2023, 43, 1645 (in Chinese).
(张祎, 杜呈卓, 李继坤, 王小野, 有机化学, 2023, 43, 1645.)
[79] Xu Y.; Cheng Z.; Li Z.; Liang B.; Wang J.; Wei J.; Zhang Z.; Wang Y.Adv. Opt. Mater. 2020, 8, 1902142.
[80] Cai X.; Pu Y.; Li C.; Wang Z.; Wang Y. Angew. Chem. Int. Ed.2023, 62, e202304104.
[81] Pu Y.; Cai X.; Qu Y.; Cui W.; Li L.; Li C.; Zhang Y.; Wang Y. Angew. Chem. Int. Ed.2025, 64, e202420253.
[82] Xu Y.; Li C.; Li Z.; Wang Q.; Cai X.; Wei J.; Wang Y. Angew. Chem. Int. Ed.2020, 59, 17442.
[83] Yang M.; Park I. S.; Yasuda T. J. Am. Chem. Soc.2020, 142, 19468.
[84] Liu Y.; Xiao X.; Ran Y.; Bin Z.; You J. Chem. Sci. 2021, 12, 9408.
[85] Yang M.; Konidena R. K.; Shikita S.; Yasuda T. J. Mater. Chem. C.2023, 11, 917.
[86] Xu Y.; Li C.; Li Z.; Wang J.; Xue J.; Wang Q.; Cai X.; Wang Y.CCS Chem. 2021, 4, 2065.
[87] Zhang Y.; Wei J.; Zhang D.; Yin C.; Li G.; Liu Z.; Jia X.; Qiao J.; Duan L. Angew. Chem. Int. Ed.2022, 61, e202113206.
[88] Qu Y.; Zhou D.; Kong F.; Zheng Q.; Tang X.; Zhu Y.; Huang C.; Feng Z.; Fan J.; Adachi C.; Liao L.; Jiang Z.Angew. Chem. Int. Ed. 2022, 61, e202201886.
[89] Chen H.; Du M.; Qu C.; Jin Q.; Tao Z.; Ji R.; Zhao G.; Zhou T.; Lou Y.; Sun Y.; Jiang W.; Duan L.; Zhang Y. Angew. Chem. Int. Ed.2025, 64, e202415400.
[90] Ju Y.; Xie L.; Xing J.; Deng Q.; Chen X.; Huang L.; Nie G.; Tan Y.; Zhang B.Angew. Chem. Int. Ed. 2025, 64, e202414383.
[91] Guo J.; Li Z.; Tian X.; Zhang T.; Wang Y.; Dou C. Angew. Chem. Int. Ed.2023, 62, e202217470.
[92] Guo J.; Yang Y.; Dou C.; Wang Y.J. Am.Chem. Soc. 2021, 143, 18272.
[93] Tian X.; Guo J.; Sun W.; Yuan L.; Dou C.; Wang Y.Chem. - Eur. J. 2022, 28, e202200045.
[94] Li Z.; Sun T.; Guo J.; Tian X.; Liu Y.; Sheng S.; Ye K.; Xie Z.; Dou C.Org. Chem. Front. 2023, 10, 4289.
[95] Feng Z.; Chong Y.; Tang S.; Fang Y.; Zhao Y.; Jiang J.; Wang X. Chem. Sci. 2021, 12, 15151.
[96] Saito S.; Matsuo K.; Yamaguchi S. J. Am. Chem. Soc.2012, 134, 9130.
[97] Hattori I.; Hagai M.; Ito M.; Sakai M.; Narita H.; Fujimoto K. J.; Yanai T.; Yamaguchi S. Angew. Chem. Int. Ed.2024, 63, e202403829.
[98] Huang T.; Ding Z.; Liu H.; Chen P.; Zhao L.; Hu Y.; Yao Y.; Yang K.; Zeng Z. Chin. Chem. Lett.2024, 35, 109117.
[99] Schnitzlein M.; Mützel C.; Shoyama K.; Farrell J.M.; Würthner F.Eur. J. Org. Chem. 2022, e202101273.
[100] Schickedanz K.; Radtke J.; Bolte M.; Lerner H.; Wagner M. J. Am. Chem. Soc.2017, 139, 2842.
[101] Matsuo K.; Saito S.; Yamaguchi S. J. Am. Chem. Soc.2014, 136, 12580.
[102] Matsuo K.; Saito S.; Yamaguchi S. Angew. Chem. Int. Ed.2016, 55, 11984.
[103] Ando N.; Yamada T.; Narita H.; Oehlmann N. N.; Wagner M.; Yamaguchi S. J. Am. Chem. Soc.2021, 143, 9944.
[104] Ikeno A.; Hayakawa M.; Sakai M.; Tsutsui Y.; Nakatsuka S.; Seki S.; Hatakeyama T.J. Am. Chem. Soc. 2024, 146, 17084.
[105] Yuan L.; Yang J.; Lv P.; Liu Y.; Li Z.; Wang Y.; Dou C.Org. Lett. 2024, 26, 11145.
[106] Liu Y.; Tian X.; Li Z.; Zhang T.; Yuan L.; Wang Y.; Dou C. Angew. Chem. Int. Ed.2025, 64, e202422031.
Outlines

/