Communication

Synthesis of Stereoregular and Functional Polyhydroxyalkanoates via Ring-Opening Polymerization Mediated by Spiro-salen Complexes

  • Hao-Yi Huang ,
  • Min Xie ,
  • Yu-Ting Huang ,
  • Jia-Hao Cui ,
  • Zhongzheng Cai ,
  • Jian-Bo Zhu
Expand
  • College of Chemistry, Sichuan University, Key Laboratory of Green Chemistry and Technology of Ministry of Education, Chengdu 610064

Received date: 2025-05-09

  Online published: 2025-06-19

Supported by

National Natural Science Foundation of China (223B2116, 22371194, 22301197).

Abstract

Polyhydroxyalkanoates (PHAs) are a class of biodegradable materials produced by bacterial fermentation. They are considered as potential alternatives for traditional plastics because their material properties are comparable to those of commercial polyolefins. However, the high cost of fermentation production has seriously restricted their large-scale application. Although PHAs produced by natural bacterial fermentation show rich structural diversity, the products are mostly limited to alkyl side-substituted derivatives and are mainly used as thermoplastics. Consequently, the development of cost-effective and efficient chemical synthesis routes to produce PHAs with enhanced structural diversity and broader potential applications is of considerable importance. In this study, functionalized four-membered cyclic lactone monomers, BPLCH2OR (R = Bu, Bn), substituted with alkoxy and benzyloxy groups, were synthesized via carbonylation of commercially available epoxides with carbon monoxide. These monomers undergo stereoselective ring-opening polymerization (ROP) to yield polymers with structures distinct from those of natural PHAs. A stereoselective polymerization system for rac-BPLCH2OR was developed using a spiro-salen yttrium complex Y2 as the catalyst. The resulting PHAs with high syndiotacticity (Pr > 0.95) exhibit significant differences in stereoregularity and thermal performance compared to their natural counterparts. It was observed that rac-Y2 and its corresponding chiral (R)-Y2 exhibit distinct catalytic behaviors: while both catalysts enable good molecular weight control, producing P(BPLOR) with low dispersity (Đ < 1.15), polymerization catalyzed by (R)-Y2 yielded atactic P(BPLCH2OR) in the form of oily liquids, whereas rac-Y2-catalyzed polymerization produces semicrystalline syndiotactic P(BPLCH2OR) (Pr > 0.95). The glass transition temperatures (Tg) and melting temperatures (Tm) range from -61 °C to 74 °C. P(BPLCH2OBn) illustrates potential for post-polymerization modification. Upon debenzylation it is expected to generate hydrophilic, stereoregular and biodegradable materials, thus demonstrating promising application prospects in the biomedical field.

Cite this article

Hao-Yi Huang , Min Xie , Yu-Ting Huang , Jia-Hao Cui , Zhongzheng Cai , Jian-Bo Zhu . Synthesis of Stereoregular and Functional Polyhydroxyalkanoates via Ring-Opening Polymerization Mediated by Spiro-salen Complexes[J]. Acta Chimica Sinica, 0 : 25050150 -25050150 . DOI: 10.6023/A25050150

References

[1] Geyer R.; Jambeck J. R.; Law K. L.Sci. Adv. 2017, 3, e1700782.
[2] Coates G. W.; Getzler Y. D.Y. L.Nat. Rev. Mater. 2020, 5, 501-516.
[3] Waters C. N.; Zalasiewicz J.; Summerhayes C.; Barnosky A. D.; Poirier C.; Gałuszka A.; Cearreta A.; Edgeworth M.; Ellis E. C.; Ellis M.; et al.Science 2016, 351, aad2622.
[4] Nihart A. J.; Garcia M. A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J. D.; Castillo, E. F.; Gullapalli, R. R.; Howard, T.; Bleske, B.; et al.Nat. Med. 2025
[5] Marfella R.; Prattichizzo F.; Sardu C.; Fulgenzi G.; Graciotti L.; Spadoni T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al.N. Engl. J. Med. 2024, 390, 900-910.
[6] Qin X.; Cao M.; Peng T.; Shan H.; Lian W.; Yu Y.; Shui G.; Li R.Environ. Sci. Technol. 2024, 58, 10482-10493.
[7] Huang H.-Y.; Xie M.; Wang S.-Q.; Huang Y.-T.; Luo Y.-H.; Yu D.-G.; Cai Z.; Zhu J.-B.J. Am. Chem. Soc. 2025, 147, 7788-7798.
[8] Cai Z.; Liu Y.; Tao Y.; Zhu J.-B.Acta Chim. Sin. 2022, 80, 1165-1182 (in chinese). (蔡中正, 刘野, 陶友华, 朱剑波, 化学学报, 2022, 80, 1165-1182.)
[9] Wang X.-M.; Huang H.-Y.; Tu Y.-M.; Cai Z.; Zhu J.-B.Polym. Chem. 2023, 14, 2027-2033.
[10] Sun Y.; An Z.; Gao Y.; Hu R.; Liu Y.; Lu H.; Lu X.-B.; Pang X.; Qin A.; Shen Y.; et al.Sci. China Chem. 2024, 67, 2803-2841.
[11] Yu H.; Qin Y.; Dong J.Prog. Chem. 2023, 35, 1294-1303 (in chinese). (于慧萍, 秦亚伟, 董金勇, 化学进展, 2023, 35, 1294-1303.)
[12] Dai J.; Xiong W.; Du M.-R.; Wu G.; Cai Z.; Zhu J.-B.Sci. China Chem. 2023, 66, 251-258.
[13] Tu Y.-M.; Wang X.-M.; Yang X.; Fan H.-Z.; Gong F.-L.; Cai Z.; Zhu J.-B.J. Am. Chem. Soc. 2021, 143, 20591-20597.
[14] Tang X.-T.; Zhou J.-A.-Q.; Tu, Y.-M.; Fan, H.-Z.; Wang, M.-Y.; Cao, Q.; Cai, Z.; Zhu, J.-B.Angew. Chem. Int. Ed. 2025, n/a, e202505310.
[15] Li K.; Cheng J.-L.; Wang M.-Y.; Xiong W.; Huang H.-Y.; Feng L.-W.; Cai Z.; Zhu J.-B.Angew. Chem. Int. Ed. 2024, 63, e202405382.
[16] Cao Q.; Fan H.-Z.; Xie M.; Cai Z.; Zhu J.-B.J. Am. Chem. Soc. 2025, 147, 1147-1154.
[17] Zhang W.; Shan S.-Y.; Dai J.; Cai Z.; Zhu J.-B.Chem. Res. Chin. Univ. 2024, 40, 856-862.
[18] Wu Y.; Fan H.; Shan S.; Wang S.; Cai Z.; Zhu J.-B.Chem. Res. Chin. Univ. 2023, 39, 809-815.
[19] Xiong W.; Dai J.; Cai Z.; Zhu J.-B.Polymer 2024, 290, 126515.
[20] Lemoigne M.Bull. Soc. Chim. Biol. 1926, 8, 770.
[21] Chen G.-Q.Chem. Soc. Rev. 2009, 38, 2434-2446.
[22] Choi S. Y.; Cho I. J.; Lee Y.; Kim Y.-J.; Kim K.-J.; Lee S. Y.Adv. Mater. 2020, 32, 1907138.
[23] Li Y.; Wang X.; Tang Y.Acta Chim. Sin. 2024, 82, 213-225 (in chinese). (李雅宁, 王晓艳, 唐勇, 化学学报, 2024, 82, 213-225.)
[24] Wang Y.; Wang C.; Ma H.Acta Chim. Sin. 2025, 83, 25-35 (in chinese). (王玉娜, 王超, 马海燕, 化学学报, 2025, 83, 25-35.)
[25] Bruckmoser J.; Pongratz S.; Stieglitz L.; Rieger B.J. Am. Chem. Soc. 2023, 145, 11494-11498.
[26] Hiki S.; Miyamoto M.; Kimura Y.Polymer 2000, 41, 7369-7379.
[27] Zhou L.; Zhang Z.; Shi C.; Scoti M.; Barange D. K.; Gowda R. R.; Chen E. Y.X.Science 2023, 380, 64-69.
[28] Westlie A. H.; Quinn E. C.; Parker C. R.; Chen E. Y.X.Prog. Polym. Sci. 2022, 134, 101608.
[29] Zhang Y.-Y.; Yang L.; Xie R.; Yang G.-W.; Wu G.-P.Macromolecules 2021, 54, 9427-9436.
[30] Yang J.-C.; Yang J.; Li W.-B.; Lu X.-B.; Liu Y.Angew. Chem. Int. Ed. 2022, 61, e202116208.
[31] Wen Y.; Nie R.; Li B.; Li S.ACS Catalysis 2023, 13, 3317-3322.
[32] Huang H.-Y.; Cai Z.; Zhu J.-B.Chin. Sci. Bull. 2023, 68, 4597-4599 (in chinese). (黄皓毅, 蔡中正, 朱剑波, 科学通报, 2023, 68, 4597-4599.)
[33] Huang H.-Y.; Xiong W.; Huang Y.-T.; Li K.; Cai Z.; Zhu J.-B.Nat. Catal. 2023, 6, 720-728.
[34] Huang H.-Y.; Ren B.-H.; Xie M.; Huang Y.-T.; Li K.; Cai Z.; Lu X.-B.; Zhu J.-B.Angew. Chem. Int. Ed. 2025, 64, e202419494.
[35] Amgoune A.; Thomas C. M.; Ilinca S.; Roisnel T.; Carpentier J.-F.Angew. Chem. Int. Ed. 2006, 45, 2782-2784.
[36] Jaffredo C. G.; Chapurina Y.; Guillaume S. M.; Carpentier J.-F.Angew. Chem. Int. Ed. 2014, 53, 2687-2691.
[37] Ligny R.; Hänninen M. M.; Guillaume S. M.; Carpentier J.-F.Angew. Chem. Int. Ed. 2017, 56, 10388-10393.
[38] Young M. S.;LaPointe, A. M.; MacMillan, S. N.; Coates, G. W.J. Am. Chem. Soc. 2024, 146, 18032-18040.
[39] Kramer J. W.; Coates G. W.Tetrahedron 2008, 64, 6973-6978.
[40] Guillaume C.; Ajellal N.; Carpentier J.-F.; Guillaume S. M.J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 907-917.
[41] Jaffredo C. G.; Carpentier J.-F.; Guillaume S. M.Polym. Chem. 2013, 4, 3837-3850.
[42] Barouti G.; Khalil A.; Orione C.; Jarnouen K.; Cammas-Marion, S.; Loyer, P.; Guillaume, S. M.Chem. Eur. J. 2016, 22, 2819-2830.
[43] Zhuo Z.; Zhang C.; Luo Y.; Wang Y.; Yao Y.; Yuan D.; Cui D.Chem. Commun. 2018, 54, 11998-12001.
[44] Liao X.; Qin J.-j.; Tang, X.-y.Acta Polym. Sin. 2023, 54, 1426-1467 (in chinese). (廖曦, 秦娇娇, 唐小燕, 高分子学报, 2023, 54, 1426-1467.)
[45] Tang X.; Chen E. Y.X.Nat. Commun. 2018, 9, 2345.
[46] Zhang Z.; Shi C.; Scoti M.; Tang X.; Chen E. Y.X.J. Am. Chem. Soc. 2022, 144, 20016-20024.
[47] Huang Y.-T.; Huang H.-Y.; Cheng J.-L.; Xie M.; Feng L.-W.; Cai Z.; Zhu J.-B.Angew. Chem. Int. Ed. 2025, 64, e202422147.
[48] Xie M.; Huang H.-Y.; Huang Y.-T.; Ye Y.-C.; Cai Z.; Zhu J.-B.ACS Macro. Lett. 2025, 14, 57-63.
[49] Kramer J. W.; Lobkovsky E. B.; Coates G. W.Org. Lett. 2006, 8, 3709-3712.
[50] Jiang S.; Wang Y.; Xu X.Chin. J. Org. Chem. 2023, 43, 1786-1791 (in chinese). (蒋胜杰, 王杨, 徐信, 有机化学, 2023, 43, 1786-1791.)
[51] Wang Y.; Yan J.Acta Chim. Sin. 2023, 81, 275-288 (in chinese). (汪阳, 阎敬灵, 化学学报, 2023, 81, 275-288.)
[52] Ge D.-H.; Shi F.Chin. J. Org. Chem. 2025, 45, 717-719 (in chinese). (戈丁浩, 石枫, 有机化学, 2025, 45, 717-719.)
[53] Ovitt T. M.; Coates G. W.J. Am. Chem. Soc. 2002, 124, 1316-1326.
[54] Peterson A.; Hador R.; Pink M.; Popowski Y.; Kol M.; Tolman W. B.J. Am. Chem. Soc. 2022, 144, 20047-20055.
[55] Wu Y.-C.; Fan H.-Z.; Zhang W.; Wang M.-Y.; Cai Z.; Zhu J.-B.Macromolecules 2022, 55, 9232-9241.
[56] Fan H.-Z.; Yang X.; Chen J.-H.; Tu Y.-M.; Cai Z.; Zhu J.-B.Angew. Chem. Int. Ed. 2022, 61, e202117639.
[57] Yang X.; Fan H.-Z.; Cai Z.; Zhang Q.; Zhu J.-B.Chin. J. Chem. 2022, 40, 2973-2980.
[58] Jaffredo C. G.; Carpentier J.-F.; Guillaume S. M.Macromolecules 2013, 46, 6765-6776.
[59] Bayliss N.; Schmidt B. V.K. J.Prog. Polym. Sci. 2023, 147, 101753.
Outlines

/