Communication

Synthesis of Stereoregular and Functional Polyhydroxyalkanoates via Ring-Opening Polymerization Mediated by Spiro-salen Complexes

  • Haoyi Huang ,
  • Min Xie ,
  • Yuting Huang ,
  • Jiahao Cui ,
  • Zhongzheng Cai , * ,
  • Jianbo Zhu , *
Expand
  • National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064

For the VSI “Rising Stars in Chemistry”.

Received date: 2025-05-09

  Online published: 2025-06-19

Supported by

National Natural Science Foundation of China(223B2116)

National Natural Science Foundation of China(22371194)

National Natural Science Foundation of China(22301197)

Abstract

Polyhydroxyalkanoates (PHAs) are a class of biodegradable materials produced by bacterial fermentation. They are considered as potential alternatives for traditional plastics because their material properties are comparable to those of commercial polyolefins. However, the high cost of fermentation production has seriously restricted their large-scale application. Although PHAs produced by natural bacterial fermentation show rich structural diversity, the products are mostly limited to alkyl side-substituted derivatives and are mainly used as thermoplastics. Consequently, the development of cost-effective and efficient chemical synthesis routes to produce PHAs with enhanced structural diversity and broader potential applications is of considerable importance. In this study, functionalized four-membered cyclic lactone monomers, BPLCH2OR (R=Bu, Bn), substituted with alkoxy and benzyloxy groups, were synthesized via carbonylation of commercially available epoxides with carbon monoxide. These monomers undergo stereoselective ring-opening polymerization (ROP) to yield polymers with structures distinct from those of natural PHAs. A stereoselective polymerization system for rac- BPLCH2OR was developed using a spiro-salen yttrium complex Y2 as the catalyst. The resulting PHAs with high syndiotacticity (Pr>0.95) exhibit significant differences in stereoregularity and thermal performance compared to their natural counterparts. It was observed that rac-Y2 and its corresponding chiral (R)-Y2 exhibit distinct catalytic behaviors: while both catalysts enable good molecular weight control, producing P(BPLCH2OR) with low dispersity (Đ<1.15), polymerization catalyzed by (R)-Y2 yielded atactic P(BPLCH2OR) in the form of oily liquids, whereas rac-Y2-catalyzed polymerization produced semicrystalline syndiotactic P(BPLCH2OR) (Pr>0.95). The glass transition temperatures (Tg) and melting temperatures (Tm) range from -61 ℃ to 74 ℃. P(BPLCH2OBn) illustrates potential for post-polymerization modification. Upon debenzylation, it is expected to generate hydrophilic, stereoregular and biodegradable materials, thus demonstrating promising application prospects in the biomedical field.

Cite this article

Haoyi Huang , Min Xie , Yuting Huang , Jiahao Cui , Zhongzheng Cai , Jianbo Zhu . Synthesis of Stereoregular and Functional Polyhydroxyalkanoates via Ring-Opening Polymerization Mediated by Spiro-salen Complexes[J]. Acta Chimica Sinica, 2025 , 83(8) : 810 -815 . DOI: 10.6023/A25050150

1 引言

高分子材料凭借其优异的性能成为了产量最高、应用最广的人工合成材料之一. 然而, 不可降解的废弃塑料给环境[1-3]乃至人体健康带来了显著的负面影响[4-6]. 因此, 开发可持续、可降解高分子材料对缓解环境危机至关重要[7-19]. 聚羟基脂肪酸酯(PHAs)是一种性能优异, 历史悠久的微生物合成聚酯[20]. 其具有丰富多样的结构[21]、优异的生物可降解性和生物相容性, 被视作传统聚烯烃材料的潜在替代产品, 受到了越来越多的关注. PHAs的巨大潜力, 能够填补当下社会对可持续性材料日益增长的需求, 为应对塑料污染危机提供了可行的解决方案. 但是, 目前PHAs的高昂生物发酵成本和性能缺陷限制了其规模化应用[22], 其侧链多为烷基取代, 结构受限.
鉴于聚合物的立构规整度对其性能具有显著影 响[23-27], 因此开发立构规整功能化PHAs的化学合成方法具有重要研究价值和应用潜力.
从消旋单体出发合成与天然PHAs具有同等结晶能力的立构规整聚合物, 需设计并合成立体选择性聚合催化剂以实现这一目标[28]. 尽管包括三金属salen配合物在内的多种催化体系, 可促进环氧化合物与一氧化碳的开环共聚合, 从而制备出结构多样的PHAs(图1a)[29-31]. 但目前尚未实现该路径的立体选择性合成. 而四元环内酯的立体选择性开环聚合是制备PHAs最受关注的方法[28,32-38]: 以BDI(Zn)为催化剂可以合成多氟取代PHAs[39]和具有双键侧基的PHAs (图1b)[40-41]; 而采用有机催化剂可以实现侧链具有羟基功能化的PHAs的开发(图1c)[41-42]. 然而上述这些功能化PHAs均为无规聚合物. 迄今为止, 立构规整PHAs的合成研究主要聚焦于烷基取代的PHAs[28,43-44], 通过烷基取代四元环内酯[33-35]及八元环内酯[45-46]单体的立体选择性开环聚合得以实现(图1d). 目前仅有Y[ONOOR1,R2]配合物实现立构规整功能化PHAs的合成报道(图1e)[36-37,40]. 尽管该配合物在烷基取代的外消旋β-丁内酯立体选择性开环聚合中表现出优异的立体控制能力, 但当其拓展至β-位为OR、CO2R配位性基团的四元环内酯开环聚合时, 所得PHAs的规整度却出现不同程度下降(图1e), 因此需对Y[ONOOR1,R2]的结构进行重新设计. 例如, 在外消旋β-丁内酯开环聚合中展现最高间同选择性(Pr=0.94)的Y[ONOOCPh3,Me], 应用于CO2R取代的单体开环聚合时, 其间同选择性急剧下降至0.68[36]. 因此, 亟需开发普适性更强、无需结构重新设计即可实现高度立构规整功能化PHAs合成的开环聚合催化剂.
图1 开环聚合制备结构多样的PHAs

Figure 1 PHAs with diverse structures via ring-opening polymerization

本小组开发的含多手性中心的螺环催化剂[32-34,47-48], 实现了烷基取代的四元环内酯的立体选择性开环聚合, 制备得到了立构规整的PHAs材料, 为探索PHAs结构-性能关系提供了高效合成平台. 在此基础上, 本研究首次将螺环-salen配合物催化剂应用于烷氧、苄氧基取代的rac-BPLCH2OR的选择性开环聚合, 无需改良催化剂结构, 实现了高间同立构功能化PHAs的化学合成(表1).
表1 螺环-salen配合物催化的取代丙内酯立体选择性开环聚合a

Table 1 Stereoselective ROP of substituted propiolactones mediated by spiro-salen complexes

Entry Monomer Catalyst Timeb Conv.c/% Mnd/kDa Đd (Mw/Mn) Pre
1 rac-BPLCH2OBu rac-Y1 10 min
12 h
17
51
n.d.f
1.24
n.d.f
1.27
n.d.f
0.50
2 rac-BPLCH2OBu (R)-Y2 3.5 h 73 7.59 1.07 0.66
3 rac-BPLCH2OBu rac-Y2 1 h >99 8.26 1.12 >0.95
4 rac-BPLCH2OBn rac-Y1 10 min
12 h
n.d.f
85
n.d.f
1.06
n.d.f
1.05
n.d.f
0.65
5 rac-BPLCH2OBn (R)-Y1 6 h 30 n.d.f n.d.f 0.60
6 rac-BPLCH2OBn (R)-Y2 3.5 h 79 8.50 1.15 0.49
7 rac-BPLCH2OBn rac-Y2 20 s >99 10.7 1.13 >0.95

a Conditions: monomer=1 mmol, [Monomer]=2.0 mol/L, p-tolylmethanol (PTMA) as the initiator, Toluene as the solvent, room temperature, [Monomer]/[Catalyst]/[Initiator]=200/1/1. b The reaction time was not optimized. c Monomer conversion measured by 1H NMR of the quenched solution. d Number-average molecular weight (Mn) and dispersity index (Đ=Mw/Mn), determined by size exclusion chromatography (SEC) at 40 ℃ in THF. e Pr is the probability of racemic linkages between monomer units determined by 13C NMR spectroscopy. f Not detected.

2 结果与讨论

2.1 单体和催化剂合成

单体BPLCH2OR (R=Bu, Bn)依据文献方法合成[33,49]: 以商业化环氧化合物与高压一氧化碳为原料, 经Cr1催化的一步插羰基反应制得. 稀土rac-Y1配合物则通过商业化salen配体与Y[N(SiHMe2)2]3•(THF)2在甲苯中以1:1比例反应制备[45]. 鉴于稀土金属配合物在有机催化及高分子聚合领域展现的优异选择性[50-51], 以及螺环骨架催化剂在立体选择性反应中的显著性能[52], 将二者结合即得到了螺环-salen Y2催化剂. 螺环二胺和取代的水杨醛反应, 可制备得到配体L2, L2和Y[N(SiH- Me2)2]3•(THF)2反应制备得到配合物螺环-salen Y2[33].

2.2 BPLCH2OR的选择性开环聚合

在获得单体与催化剂后, 我们首先系统性考察了螺环-salen Y2催化外消旋β-内酯rac-BPLCH2OR的开环聚合性能, 并选取rac-Y1作为对比催化剂. 实验结果显示(表1, Entries 1和4), rac-Y1rac-BPLCH2OBurac-BPLCH2OBn均缺乏立体选择性(间规度Pr<0.65), 催化活性中等, 反应进行12 h后单体转化率分别为51%和85%. 手性的(R)-Y1催化rac-BPLCH2OBn开环聚合所得聚合物的规整度Pr也仅有0.60 (表1, Entry 5). 手性(R)-Y2催化rac-BPLCH2OR开环聚合时, 所得聚合物P(BPLCH2OBu)和P(BPLCH2OBn)同样呈现近乎无规的立构规整度(间规度Pr分别为0.66和0.49), 此现象与(R)-Y2 催化β-位烷基取代消旋四元环内酯开环聚合的规律一致[34]. (R)-Y2催化BPLCH2OBu开环聚合时(表1, Entry 2), 3.5 h内单体转化率达73%, 所得聚合物分子量为7.59 kDa, 分散度仅为1.07, 表现出优异的控制性; 而催化BPLCH2OBn开环聚合时(表1, Entry 6), 产物P(BPLCH2OBn)的分子量为8.50 kDa, 分散度为1.15, 单体转化率达79%, 同样展现了良好的聚合可控性.
rac-Y2替代(R)-Y2催化rac-BPLCH2OR的开环聚合(表1, Entries 3和7), 在保持良好的分散度控制(Đ<1.15)的同时, 立体选择性显著提升至Pr=0.95. 该结果与(R)-Y2催化的四元环内酯开环聚合体系形成显著差异, 与文献报道趋势一致[34,48]. 具体而言, rac-Y2催化rac-BPLCH2OBu开环聚合时, 在未优化反应时间的条件下, 1 h转化率即可达99%; 而催化rac-BPLCH2OBn开环聚合时, 反应淬灭时间缩短至20 s, 转化率仍高达99%. 综合实验结果表明, 在四元环内酯开环聚合体系中, rac-Y2的催化活性与立体选择性均显著优于(R)-Y2.
功能化PHAs的规整度通过13C NMR进行表征(图2, 支持信息图S9~S12). 具体而言, 在无规P(BPLCH2OBn)的13C NMR谱图羰基区域中, δ 169.4和169.3处的信号分别对应羰基碳的间同连接(rac linkage)和全同连接(meso linkage)的信号(图2a). 对于高度间同立构的P(BPLCH2OBn), 其碳谱图中几乎未检测到δ 169.3处全同连接的信号. 此外, 无规和间同立构P(BPLCH₂OBu)的13C NMR谱图呈现相似规律, 其间同连接和全同连接的信号分别位于δ 169.5和169.4.
图2 间同和无规PHAs的13C NMR谱图

Figure 2 13C NMR spectra of syndiotactic and atactic PHAs

光学纯催化剂(R)-Y2所表现出的催化活性及立体选择性显著低于其外消旋体rac-Y2的反常现象, 可通过聚合物链交换机制予以阐释[33-34,53-54]: 在(R)-Y2催化的外消旋单体开环聚合过程中, 会生成低活性物种(R)-Y-(S)-链, 该物种会毒化催化剂并阻碍反应进程; 而在rac-Y2催化的相同反应中, 低活性物种(R)-Y-(S)-链与(S)-Y-(R)-链能够通过快速链交换重新转化为活性物种(R)-Y-(R)-链和(S)-Y-(S)-链, 从而增强聚合反应活性, 并使反应呈现高度的间同选择性.

2.3 P(BPLCH2OR)的热性能测试

图3展示了所制备的无规(Pr≈0.50)和间同立构P(BPLCH2OR) (Pr>0.95)的热重分析(Thermogravimetry Analysis, TGA)与差示扫描量热(Differential Scanning Calorimetry, DSC)曲线, 扫描温度均为10 ℃/min. 以聚合物质量损失5%时的温度(Td, 5%)为分解温度指标, TGA曲线(图3a, 支持信息图S1~S8)显示, 苄氧基取代P(BPLCH2OBn)无论呈无规(atactic, at)或间同立构(syndiotactic, st), 其Td, 5%均显著高于烷氧基取代的P(BPLCH2OBu), 分别达到了259和264 ℃. 推测芳环结构增强了P(BPLCH2OBn)热稳定性. 此外, 间同立构P(BPLCH2OR)的Td, 5%均略高于对应的无规聚合物.
图3 间同和无规PHAs的DSC曲线

Figure 3 DSC curves of syndiotactic and atactic PHAs

DSC测试(图3b, 支持信息图S1~S8)表明, 无规构型的at-P(BPLCH2OBu)与at-P(BPLCH2OBn)均未表现出熔融转变温度(melting transition temperature, Tm),其中at-P(BPLCH2OBu)的玻璃化转变温度(glass transition temperature, Tg)低至-61 ℃, 而at-P(BPLCH2OBn)的Tg则显著升高至-11 ℃. 随着立构规整度提升, st-P(BPLCH2OBu) (Pr=0.95)热性能显著增强: 呈现两个差异明显的熔融峰(Tm1=19 ℃, Tm2=74 ℃), 推测两个熔融转变分别源于长侧链缠结诱导的结晶[34,55]与主链立构规整性主导的结晶. 芳基取代的st-P(BPLCH2OBn) (Pr>0.95)却表现出反常的热行为, 仅在-5 ℃处存在Tg且无Tm, 宏观上呈现油状物特征.
鉴于苄氧基取代的P(BPLCH2OBn)具有后修饰潜 力[41-42,56-57], 且PHAs骨架材料具有优异的生物相容性和生物降解性[40-42,58], P(BPLCH2OBn)经脱苄基处理后有望制备羟基功能化的生物医用材料[41-42,56,58-59].

3 结论

本研究基于前期设计的螺环-salen Y2催化剂体系, 将其应用于功能化烷氧基取代的消旋四元环内酯单体 rac-BPLCH2OR的立体选择性开环聚合, 成功实现了高间同立构聚合物P(BPLCH2OR) (Pr>0.95)的化学合成. 所得聚合物P(BPLCH2OBn)具有后功能化的潜力, 有望制备侧基为羟基取代的立构规整可降解材料, 在生物医用领域展现出潜在应用价值.
(Cheng, F.)
[1]
Geyer, R.; Jambeck, J. R.; Law, K. L. Sci. Adv. 2017, 3, e1700782.

[2]
Coates, G. W.; Getzler, Y. D. Y. L. Nat. Rev. Mater. 2020, 5, 501.

[3]
Waters, C. N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A. D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E. C.; Ellis, M.; Jeandel, C.; Leinfelder, R.; McNeill, J. R.; Richter, D. d.; Steffen, W.; Syvitski, J.; Vidas, D.; Wagreich, M.; Williams, M.; Zhisheng, A.; Grinevald, J.; Odada, E.; Oreskes, N.; Wolfe, A. P. Science 2016, 351, aad2622.

[4]
Nihart, A. J.; Garcia, M. A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J. D.; Castillo, E. F.; Gullapalli, R. R.; Howard, T.; Bleske, B.; Scott, J.; Gonzalez-Estrella, J.; Gross, J. M.; Spilde, M.; Adolphi, N. L.; Gallego, D. F.; Jarrell, H. S.; Dvorscak, G.; Zuluaga-Ruiz, M. E.; West, A. B.; Campen, M. J. Nat. Med. 2025, 31, 1114.

[5]
Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; Pellegrini, V.; Municinò, M.; Siniscalchi, M.; Spinetti, F.; Vigliotti, G.; Vecchione, C.; Carrizzo, A.; Accarino, G.; Squillante, A.; Spaziano, G.; Mirra, D.; Esposito, R.; Altieri, S.; Falco, G.; Fenti, A.; Galoppo, S.; Canzano, S.; Sasso, F. C.; Matacchione, G.; Olivieri, F.; Ferraraccio, F.; Panarese, I.; Paolisso, P.; Barbato, E.; Lubritto, C.; Balestrieri, M. L.; Mauro, C.; Caballero, A. E.; Rajagopalan, S.; Ceriello, A.; D’Agostino, B.; Iovino, P.; Paolisso, G. N. Engl. J. Med. 2024, 390, 900.

[6]
Qin, X.; Cao, M.; Peng, T.; Shan, H.; Lian, W.; Yu, Y.; Shui, G.; Li, R. Environ. Sci. Technol. 2024, 58, 10482.

[7]
Huang, H.-Y.; Xie, M.; Wang, S.-Q.; Huang, Y.-T.; Luo, Y.-H.; Yu, D.-G.; Cai, Z.; Zhu, J.-B. J. Am. Chem. Soc. 2025, 147, 7788.

[8]
Cai, Z.; Liu, Y.; Tao, Y.; Zhu, J.-B. Acta Chim. Sinica 2022, 80, 1165 (in Chinese).

(蔡中正, 刘野, 陶友华, 朱剑波, 化学学报, 2022, 80, 1165.)

DOI

[9]
Wang, X.-M.; Huang, H.-Y.; Tu, Y.-M.; Cai, Z.; Zhu, J.-B. Polym. Chem. 2023, 14, 2027.

[10]
Sun, Y.; An, Z.; Gao, Y.; Hu, R.; Liu, Y.; Lu, H.; Lu, X.-B.; Pang, X.; Qin, A.; Shen, Y.; Tao, Y.; Wang, Y.-Z.; Wang, J.; Wu, G.; Wu, G.-P.; Xu, T.-Q.; Zhang, X.-H.; Zhang, Y.; Zhang, Z.; Zhu, J.-B.; Hong, M.; Li, Z. Sci. China Chem. 2024, 67, 2803.

[11]
Yu, H.; Qin, Y.; Dong, J. Prog. Chem. 2023, 35, 1294 (in Chinese).

(于慧萍, 秦亚伟, 董金勇, 化学进展, 2023, 35, 1294.)

DOI

[12]
Dai, J.; Xiong, W.; Du, M.-R.; Wu, G.; Cai, Z.; Zhu, J.-B. Sci. China Chem. 2023, 66, 251.

[13]
Tu, Y.-M.; Wang, X.-M.; Yang, X.; Fan, H.-Z.; Gong, F.-L.; Cai, Z.; Zhu, J.-B. J. Am. Chem. Soc. 2021, 143, 20591.

[14]
Tang, X.-T.; Zhou, J.-A.-Q.; Tu, Y.-M.; Fan, H.-Z.; Wang, M.-Y.; Cao, Q.; Cai, Z.; Zhu, J.-B. Angew. Chem., Int. Ed. 2025, 64, e202505310.

[15]
Li, K.; Cheng, J.-L.; Wang, M.-Y.; Xiong, W.; Huang, H.-Y.; Feng, L.-W.; Cai, Z.; Zhu, J.-B. Angew. Chem., Int. Ed. 2024, 63, e202405382.

[16]
Cao, Q.; Fan, H.-Z.; Xie, M.; Cai, Z.; Zhu, J.-B. J. Am. Chem. Soc. 2025, 147, 1147.

[17]
Zhang, W.; Shan, S.-Y.; Dai, J.; Cai, Z.; Zhu, J.-B. Chem. Res. Chin. Univ. 2024, 40, 856.

[18]
Wu, Y.; Fan, H.; Shan, S.; Wang, S.; Cai, Z.; Zhu, J.-B. Chem. Res. Chin. Univ. 2023, 39, 809.

[19]
Xiong, W.; Dai, J.; Cai, Z.; Zhu, J.-B. Polymer 2024, 290, 126515.

[20]
Lemoigne, M. Bull. Soc. Chim. Biol. 1926, 8, 770.

[21]
Chen, G.-Q. Chem. Soc. Rev. 2009, 38, 2434.

[22]
Choi, S. Y.; Cho, I. J.; Lee, Y.; Kim, Y.-J.; Kim, K.-J.; Lee, S. Y. Adv. Mater. 2020, 32, 1907138.

[23]
Li, Y.; Wang, X.; Tang, Y. Acta Chim. Sinica 2024, 82, 213 (in Chinese).

(李雅宁, 王晓艳, 唐勇, 化学学报, 2024, 82, 213.)

DOI

[24]
Wang, Y.; Wang, C.; Ma, H. Acta Chim. Sinica 2025, 83, 25 (in Chinese).

(王玉娜, 王超, 马海燕, 化学学报, 2025, 83, 25.)

DOI

[25]
Bruckmoser, J.; Pongratz, S.; Stieglitz, L.; Rieger, B. J. Am. Chem. Soc. 2023, 145, 11494.

DOI PMID

[26]
Hiki, S.; Miyamoto, M.; Kimura, Y. Polymer 2000, 41, 7369.

[27]
Zhou, L.; Zhang, Z.; Shi, C.; Scoti, M.; Barange, D. K.; Gowda, R. R.; Chen, E. Y. X. Science 2023, 380, 64.

DOI PMID

[28]
Westlie, A. H.; Quinn, E. C.; Parker, C. R.; Chen, E. Y. X. Prog. Polym. Sci. 2022, 134, 101608.

[29]
Zhang, Y.-Y.; Yang, L.; Xie, R.; Yang, G.-W.; Wu, G.-P. Macromolecules 2021, 54, 9427.

[30]
Yang, J.-C.; Yang, J.; Li, W.-B.; Lu, X.-B.; Liu, Y. Angew. Chem., Int. Ed. 2022, 61, e202116208.

[31]
Wen, Y.; Nie, R.; Li, B.; Li, S. ACS Catal. 2023, 13, 3317.

[32]
Huang, H.-Y.; Cai, Z.; Zhu, J.-B. Chin. Sci. Bull. 2023, 68, 4597 (in Chinese).

(黄皓毅, 蔡中正, 朱剑波, 科学通报, 2023, 68, 4597.)

[33]
Huang, H.-Y.; Xiong, W.; Huang, Y.-T.; Li, K.; Cai, Z.; Zhu, J.-B. Nat. Catal. 2023, 6, 720.

[34]
Huang, H.-Y.; Ren, B.-H.; Xie, M.; Huang, Y.-T.; Li, K.; Cai, Z.; Lu, X.-B.; Zhu, J.-B. Angew. Chem., Int. Ed. 2025, 64, e202419494.

[35]
Amgoune, A.; Thomas, C. M.; Ilinca, S.; Roisnel, T.; Carpentier, J.-F. Angew. Chem., Int. Ed. 2006, 45, 2782.

[36]
Jaffredo, C. G.; Chapurina, Y.; Guillaume, S. M.; Carpentier, J.-F. Angew. Chem., Int. Ed. 2014, 53, 2687.

[37]
Ligny, R.; Hänninen, M. M.; Guillaume, S. M.; Carpentier, J.-F. Angew. Chem., Int. Ed. 2017, 56, 10388.

[38]
Young, M. S.; LaPointe, A. M.; MacMillan, S. N.; Coates, G. W. J. Am. Chem. Soc. 2024, 146, 18032.

[39]
Kramer, J. W.; Coates, G. W. Tetrahedron 2008, 64, 6973.

DOI PMID

[40]
Guillaume, C.; Ajellal, N.; Carpentier, J.-F.; Guillaume, S. M. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 907.

[41]
Jaffredo, C. G.; Carpentier, J.-F.; Guillaume, S. M. Polym. Chem. 2013, 4, 3837.

[42]
Barouti, G.; Khalil, A.; Orione, C.; Jarnouen, K.; Cammas-Marion, S.; Loyer, P.; Guillaume, S. M. Chem. Eur. J. 2016, 22, 2819.

[43]
Zhuo, Z.; Zhang, C.; Luo, Y.; Wang, Y.; Yao, Y.; Yuan, D.; Cui, D. Chem. Commun. 2018, 54, 11998.

[44]
Liao, X.; Qin, J.-J.; Tang, X.-Y. Acta Polym. Sin. 2023, 54, 1426 (in Chinese).

(廖曦, 秦娇娇, 唐小燕, 高分子学报, 2023, 54, 1426.)

[45]
Tang, X.; Chen, E. Y. X. Nat. Commun. 2018, 9, 2345.

[46]
Zhang, Z.; Shi, C.; Scoti, M.; Tang, X.; Chen, E. Y. X. J. Am. Chem. Soc. 2022, 144, 20016.

[47]
Huang, Y.-T.; Huang, H.-Y.; Cheng, J.-L.; Xie, M.; Feng, L.-W.; Cai, Z.; Zhu, J.-B. Angew. Chem., Int. Ed. 2025, 64, e202422147.

[48]
Xie, M.; Huang, H.-Y.; Huang, Y.-T.; Ye, Y.-C.; Cai, Z.; Zhu, J.-B. ACS Macro. Lett. 2025, 14, 57.

[49]
Kramer, J. W.; Lobkovsky, E. B.; Coates, G. W. Org. Lett. 2006, 8, 3709.

PMID

[50]
Jiang, S.; Wang, Y.; Xu, X. Chin. J. Org. Chem. 2023, 43, 1786 (in Chinese).

(蒋胜杰, 王杨, 徐信, 有机化学, 2023, 43, 1786.)

DOI

[51]
Wang, Y.; Yan, J. Acta Chim. Sinica 2023, 81, 275 (in Chinese).

(汪阳, 阎敬灵, 化学学报, 2023, 81, 275.)

DOI

[52]
Ge, D.-H.; Shi, F. Chin. J. Org. Chem. 2025, 45, 717 (in Chinese).

(戈丁浩, 石枫, 有机化学, 2025, 45, 717.)

DOI

[53]
Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316.

PMID

[54]
Peterson, A.; Hador, R.; Pink, M.; Popowski, Y.; Kol, M.; Tolman, W. B. J. Am. Chem. Soc. 2022, 144, 20047.

[55]
Wu, Y.-C.; Fan, H.-Z.; Zhang, W.; Wang, M.-Y.; Cai, Z.; Zhu, J.-B. Macromolecules 2022, 55, 9232.

[56]
Fan, H.-Z.; Yang, X.; Chen, J.-H.; Tu, Y.-M.; Cai, Z.; Zhu, J.-B. Angew. Chem., Int. Ed. 2022, 61, e202117639.

[57]
Yang, X.; Fan, H.-Z.; Cai, Z.; Zhang, Q.; Zhu, J.-B. Chin. J. Chem. 2022, 40, 2973.

[58]
Jaffredo, C. G.; Carpentier, J.-F.; Guillaume, S. M. Macromolecules 2013, 46, 6765.

[59]
Bayliss, N.; Schmidt, B. V. K. J. Prog. Polym. Sci. 2023, 147, 101753.

Outlines

/