Review

Metal-Organic Framework Composites

  • Gao Chun ,
  • Zhang Songtao ,
  • Pang Huan
Expand
  • aJiangsu Commercial Vocational College, Nantong, 226011;
    bCollege of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009;
    cState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023

Received date: 2025-04-12

  Online published: 2025-06-20

Supported by

National Natural Science Foundation of China (52371240) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

With the intensification of environmental challenges and the ever-growing global energy demand, conventional materials are increasingly unable to satisfy the stringent requirements in energy and environmental fields. Metal-organic frameworks (MOFs), as a class of crystalline porous materials composed of metal nodes and organic ligands, have emerged as promising candidates due to their tunable pore structures, exceptionally high surface areas, and versatile functionalities. These features enable MOFs to play a significant role in applications such as adsorption and electrochemical energy storage. However, the poor intrinsic electrical conductivity and limited structural stability of pristine MOFs restrict their practical implementation. To address these limitations, MOF-based composites have been developed by integrating MOFs with a variety of guest materials including inorganic carbonaceous materials (e.g., graphene, carbon nanotubes), metal oxides, and conductive polymers. These composites not only retain the inherent advantages of MOFs but also enhance conductivity, mechanical robustness, and chemical stability through synergistic interactions. Importantly, the integration strategies often involve the construction of heterostructures, interface engineering, and the introduction of chemically bonded interfaces, thereby promoting efficient charge transfer and long-term cycling stability. This review offers a comprehensive summary of MOF composites and their emerging applications in electrochemical energy storage systems, such as supercapacitors, lithium-ion batteries, lithium-sulfur batteries and aqueous zinc ion batteries, as well as in environmental adsorption processes targeting heavy metals and CO2 capture. The discussion also emphasizes dimensional design from zero-dimensional (0D) nanoparticles to three-dimensional (3D) frameworks, each exhibiting unique advantages in terms of electron transport, ion diffusion, and active site accessibility. We analyze the relationships of these composites, highlighting how different combinations and morphologies (e.g., core-shell architectures, layered hybrids, and flexible films) influence their functional performance. MOF composites represent a promising frontier for the development of next-generation functional materials. Their tunable dimensionality, enhanced chemical properties and multifunctional adaptability open up new avenues for solving urgent global issues in energy sustainability and environmental remediation.

Cite this article

Gao Chun , Zhang Songtao , Pang Huan . Metal-Organic Framework Composites[J]. Acta Chimica Sinica, 0 : 1 -1 . DOI: 10.6023/A25040117

References

[1] Wen Z.; Mu X.; Sun X.; Xu Z.; Zheng M.; Zhou H.; He P. Angew. Chem. Int. Ed. 2025, 64(16), e202424121.
[2] Zhu W.; Hu W.; Wei Y.; Zhang Y.; Pan K.; Zhang S.; Hang X.; Zheng M.; Pang H. Adv. Funct. Mater. 2024, 34(49), 2409390.
[3] Ni H.; Wang Y.; Yao K.; Wang L.; Huang J.; Xiao Y.; Chen H.; Liu B.; Yang C. Y.; Zhao J. Nat.Commun. 2024, 15(1), 1.
[4] Ilić N.; Tan K.; Mayr F.; Hou S.; Aumeier B. M.; Morales E. M.C.; Hübner, U.; Cookman, J.; Schneemann, A.; Gagliardi, A.; Drewes, J. E.; Fischer, R. A.; Mukherjee, S. Adv. Mater. 2025, 37(6), 2413120.
[5] Chen Y.; Zhang S.; Chen Y.; Ding H.; Yao S.; Tang Y.; Qiu Z.; Xu K.; Hu Y.; Gong H.; Hu Y.; Pang H.Nano Res. 2025, 18(6), 94907446.
[6] Zhou H.; Gu S.; Lu Y.; Zhang G.; Li B.; Dou F.; Cao S.; Li Q.; Sun Y.; Shakouri M.; Pang H. Adv.Mater. 2024, 36(29), 2401856.
[7] Yao S.; Zhang S.; Zhang G.; Tang Y.; Zhu R.; Peng Y.; Chen Y.; Pang H. Inorg.Chem. 2023, 62(39), 16038-16046.
[8] He Y.; Tan Y.; Zhang J. Acta Chim. Sinica 2014, 72(12), 1228.
[9] Noman M.; Saqib Q. M.; Ameen S.; Patil S. R.; Patil C. S.; Kim J.; Ko Y.; Kim B.; Bae J. Adv.Sci. 2024, 11, 2404993.
[10] Li Y.; Zou B.; Xiao A.; Zhang H. Chin.J. Chem. 2017, 35(10), 1501-1511.
[11] Xie Q.; Ou H.; Yang Q.; Lin X.; Zeb A.; Li K.; Chen X.; Ma G.Dalton Trans. 2021, 50(28), 9669-9684.
[12] Jiao L.; Seow J. Y.R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43-68.
[13] Guo C.; Ma X.; Wang B. Acta Chim. Sinica 2021, 79(8), 967.
[14] Zhang J.; Li P.; Zhang X.; Ma X.; Wang B. Acta Chim. Sinica 2020, 78(7), 597.
[15] Dai M.; Wang J.; Li L.; Wang Q.; Liu M.; Zhang Y. Acta Chim. Sinica 2020, 78(4), 355.
[16] Carbonell C.;Linares-Moreau, M.; Borisov, S. M.; Falcaro, P. Adv. Mater. 2024, 36, 2408770.
[17] Oh H.; Lee G.; Oh M. Small 2024, 20(25), 2306543.
[18] Zhou X.; Wang T.; He D.; Chen P.; Liu H.; Lv H.; Wu H.; Su D.; Pang H.; Wang C. Angew. Chem. Int. Ed. 2024, 63, e202408989.
[19] Yang G.; Wang D.; Wang Y.; Hu W.; Hu S.; Jiang J.; Huang J.; Jiang H.-L.J. Am. Chem. Soc. 2024, 146(15), 10798-10805.
[20] Zhang C.; Xie C.; Gao Y.; Tao X.; Ding C.; Fan F.; Jiang H. Angew. Chem. Int. Ed. 2022, 61(28), e202204108.
[21] Mohanty A.; Kang K.; Saravanakumar B.; Ramadoss A.; Jang J. Small 2024, 20(23), 2308771.
[22] Su Q.; Li J.; Yuan H.; Wang B.; Wang Y.; Li Y.; Xing Y. Chem. Eng. J. 2022, 427, 131594.
[23] Shokouhfar N.; Kilaparthi S. K.; Barras A.; Abraham B. M.; Addad A.; Roussel P.; Bhatt S.; Jain S. L.; Szunerits S.; Morsali A.; Boukherroub R. Inorg.Chem. 2024, 63, 2327-2339.
[24] Yang Z.; Belmabkhout Y.; McHugh, L. N.; Ao, D.; Sun, Y.; Li, S.; Qiao, Z.; Bennett, T. D.; Guiver, M. D.; Zhong, C. Nat. Mater. 2023, 22(7), 888-894.
[25] Huang G.; Chen Y.; Jiang H. Acta Chim. Sinica 2016, 74(2), 113.
[26] Sun D.; Mo F.; Zhou Y.; Lu J.; Duan H. Materials & Design 2024, 239, 112804.
[27] Kaur R.; Rana A.; Singh R. K.; Chhabra V. A.; Kim K.-H.; Deep A. RSC Adv. 2017, 7(46), 29015-29024.
[28] Chen Y.; Liang J.; Su Y.; Zhu G.; Xu H.; Ding H.; Zhang G.; Yu D.; Shen Z.; Zhang Y.; Huang W.; Pang H. Sci.China Chem. 2025, 68, 2378-2387.
[29] Yang D.; Liang Z.; Tang P.; Zhang C.; Tang M.; Li Q.; Biendicho J. J.; Li J.; Heggen M.; Dunin‐Borkowski, R. E.; Xu, M.; Llorca, J.; Arbiol, J.; Morante, J. R.; Chou, S.; Cabot, A. Adv. Mater. 2022, 34(10), 2108835.
[30] Lee G.; Lee S.; Oh S.; Kim D.; Oh M. J. Am. Chem. Soc. 2020, 142(6), 3042-3049.
[31] Lyu L.; Zhao Y.; Wei Y.; Wang H. Acta Chim. Sinica 2021, 79(7), 869.
[32] Liu Z.; Hu R.; Yu R.; Zheng M.; Zhang Y.; Chen X.; Shen L.; Xia Y.Nano Lett. 2024, 24, 4908-4916.
[33] Hai G.; Jia X.; Zhang K.; Liu X.; Wu Z.; Wang G. Nano Energy 2018, 44, 345-352.
[34] Pi Y.; Qiu Z.; Fan Y.; Mao Q.; Zhang G.; Wang X.; Chang H.-H.; Chen H.-J.; Chen T.-Y.; Chen H.-Y.; Zhang S.; Shakouri M.; Pang H.Nano Lett. 2024, 24(43), 13760-13768.
[35] Zhang S.; Li Y.; Zhuang X.; Hu Y.; Xu K.; Zhang G.; Pi Y.; Tang Y.; Hu J.; Zang R.; Qiu Z.; Zhou H.; Yu F.; Shakouri M.; Pang H. Adv.Mater. 2025, 37(9), 2418344.
[36] Liu Y.; Xin N.; Yang Q.; Shi W. Journal of Colloid and Interface Science 2021, 583, 288-298.
[37] Safy M. E.A.; Haikal, R. R.; Elshazly, B.; Hamdy, A.; Ali, F.; Maarouf, A. A.; Alkordi, M. H. Appli. Mater. Today 2020, 19, 100604.
[38] Wang B.; Liu S.; Liu L.; Song W.-W.; Zhang Y.; Wang S.-M.; Han Z.-B.J. Mater. Chem. A 2021, 9(5), 2948-2958.
[39] Zhou H.; Zhu G.; Dong S.; Liu P.; Lu Y.; Zhou Z.; Cao S.; Zhang Y.; Pang H. Adv.Mater. 2023, 35(19), 2211523.
[40] Zhang S.; Zheng M.; Tang Y.; Zang R.; Zhang X.; Huang X.; Chen Y.; Yamauchi Y.; Kaskel S.; Pang H. Adv. Funct. Mater. 2022, 32(40), 2204714.
[41] Wu H.; Zhang W.; Kandambeth S.; Shekhah O.; Eddaoudi M.; Alshareef H. N. Adv. Energy Mater. 2019, 9(21), 1900482.
[42] Liu L.; Yan Y.; Cai Z.; Lin S.; Hu X. Adv.Mater. Interfaces 2018, 5(8), 1701548.
[43] Ibrahim I.; Zheng S.; Foo C. Y.; Huang N. M.; Lim H. N.J. Energy Storage 2021, 43, 103304.
[44] Saxena N.; Bondarde M. P.; Lokhande K. D.; Bhakare M. A.; Dhumal P. S.; Some S. Chem. Phys. Lett. 2024, 856, 141605.
[45] Kumaraguru S.; Yesuraj J.; Mohan S. Composites Part B: Engineering 2020, 185, 107767.
[46] Zheng S.; Li Q.; Xue H.; Pang H.; Xu Q. Nati. Sci. Rev. 2020, 7(2), 305-314.
[47] Li G.; Cai H.; Li X.; Zhang J.; Zhang D.; Yang Y.; Xiong J. ACS Appl. Mater. Interfaces 2019, 11(41), 37675-37684.
[48] Yao S.; Jiao Y.; Sun S.; Wang L.; Li P.; Chen G. ACS Sustainable Chem.Eng. 2020, 8(8), 3191-3199.
[49] Qing L.; Jiang J. ACS Nano 2023, 17(17), 17122-17130.
[50] Shao L.; Wang Q.; Ma Z.; Ji Z.; Wang X.; Song D.; Liu Y.; Wang N. J. Power Sources 2018, 379, 350-361.
[51] Yue T.; Douka A. I.; Qi K.; Qiu Y.; Guo X.; Xia B. Y.J. Mater. Chem. A 2021, 9(38), 21799-21806.
[52] Singh J.; Choudhury A.; Ahmad Md. W.; Syed A.; AL-Shwaiman, H. A.; Subramaniam, M.; Yang, D.-J. J. Alloys Compd. 2025, 1014, 178638.
[53] Liu F.; Zuo P.; Li J.; Shi P.; Shao Y.; Chen L.; Tan Y.; Ma T. J.Energy Chem. 2024, 93, 282-288.
[54] Chai Y.; Ning D.; Zhou D.; Gao J.; Ni J.; Zhang G.; Gao R.; Wu W.; Wang J.; Li Y. Nano Energy 2024, 130, 110160.
[55] Hu Q.; Han G.; Wang A.; Gao K.; Liao J.; Ding M.; Zhou Y.; Dominko R.; Wang H.; Yao J. Chem. Eng. J. 2024, 497, 154608.
[56] Yu Y.; Zhang X. Acta Chim. Sinica 2020, 78(12), 1434.
[57] Chang Z.; Qiao Y.; Yang H.; Deng H.; Zhu X.; He P.; Zhou H. Acta Chim. Sinica 2021, 79(2), 139.
[58] Li S.; Chen Y.; Leng X.; Yang M.; Arifeen W. U.; Ko T. J. Chem. Eng. J. 2024, 500, 157209.
[59] Zhu H.; Yu Z.; Song Y.; Liu S.; Zhao L.; Guo J.; Li W.; Han X.; Wen Z. ChemPhysChem 2025, 26, e202401007.
[60] Qiao Y.; Hu Y.; Qian Z.; Qu M.; Liu Z. J.Colloid Interface Sci. 2025, 684, 678-689.
[61] Shi Y.; Song G.; Yang B.; Tang Y.; Liu Z.; Zhang Z.; Shakouri M.; Cheng J.; Pang H. Adv.Mater. 2025, 37, 2416665.
[62] Ma Y.; Wei L.; He Y.; Yuan X.; Su Y.; Gu Y.; Li X.; Zhao X.; Qin Y.; Mu Q.; Peng Y.; Sun Y.; Deng Z. Angew. Chem. Int. Ed. 2022, 61(12), e202116291.
[63] Gu Z.; Miao Y.; Li W.; Chen Y.; Xia X.; Chen G.; Liu H. ACS Appl.Energy Mater. 2020, 3(4), 3815-3825.
[64] Dai Z.; Long Z.; Li R.; Shi C.; Qiao H.; Wang K.; Liu K. ACS Appl.Energy Mater. 2020, 3(12), 12378-12384.
[65] Han Y.; Liu Z.; Zheng F.; Bai Y.; Zhang Z.; Li X.; Xiong W.; Zhang J.; Yuan A. J.Alloys Compd. 2021, 881, 160531.
[66] Li M.; Cheng S.; Zhang J.; Huang C.; Gu J.; Han J.; Xu X.; Chen X.; Zhang P.; You Y. Chem. Eng. J. 2024, 487, 150709.
[67] Jiang Q.; Xiong P.; Liu J.; Xie Z.; Wang Q.; Yang X.; Hu E.; Cao Y.; Sun J.; Xu Y.; Chen L. Angew. Chem. Int. Ed. 2020, 59(13), 5273-5277.
[68] Zhang C.; Shen L.; Shen J.; Liu F.; Chen G.; Tao R.; Ma S.; Peng Y.; Lu Y. Adv.Mater. 2019, 31(21), 1808338.
[69] Cyril Karima,N.; Jin, S.; Mook Choi, S.; Jenerali Nyamtara, K.; Maldonado Nogales, P.; Cuong Nguyen, M.; Hoon Kim, S.; Nam Lim, S.; Jeong, S.-K.; Kim, H.-K.; Ho Seo, M.; Ahn, W. Chem. Eng. J. 2024, 497, 154634.
[70] Li Z.; Wang J.; Yuan H.; Yu Y.; Tan Y. Adv. Funct. Mater. 2024, 34(45), 2405890.
[71] Zhou L.; Pan H.; Yin G.; Xiang Y.; Tan P.; Li X.; Jiang Y.; Xu M.; Zhang X. Adv. Funct. Mater. 2024, 34(23), 2314246.
[72] Sun Z.; Sun B.; Xue J.; He J.; Zhao R.; Chen Z.; Sun Z.; Liu H. K.; Dou S. X. Adv. Funct. Mater. 2025, 35(5), 2414671.
[73] Zhang H.; Zhao W.; Zou M.; Wang Y.; Chen Y.; Xu L.; Wu H.; Cao A. Adv.Energy Mater. 2018, 8(19), 1800013.
[74] Deng T.; Men X.-L.; Jiao X.-C.; Wang J. Ceram.Int. 2022, 48(3), 4352-4360.
[75] Qi J.; Zhang M.; Xu T.; Liu K.; Wang Y.; Zhang H.; Wang X.; Yuan Z.; Si C. Chem. Eng. J. 2024, 500, 157318.
[76] Jin H.-G.; Wang M.; Wen J.-X.; Han S.-H.; Hong X.-J.; Cai Y.-P.; Li G.; Fan J.; Chao, Z.-S. ACS Appl. Mater. Interfaces 2021, 13(3), 3899-3910.
[77] Feng Y.; Wang G.; Kang W.; Deng N.; Cheng B. Electrochim. Acta 2021, 365, 137344.
[78] Li X.; Yan Z.; Zhang J.; Huang Z.; Li F.; Yang L.; Huang J.; Wang G.; Xu G. Chemical Engineering Journal 2024, 493, 152554.
[79] Hong X.-J.; Song C.-L.; Yang Y.; Tan H.-C.; Li G.-H.; Cai Y.-P.; Wang H. ACS Nano 2019, 13, 1923-1931.
[80] Bai S.; Liu X.; Zhu K.; Wu S.; Zhou H. Nat. Energy 2016, 1(7), 16094.
[81] Liu B.; Taheri M.; Torres J. F.; Fusco Z.; Lu T.; Liu Y.; Tsuzuki T.; Yu G.; Tricoli A. ACS Nano 2020, 14(10), 13852-13864.
[82] Wu X.; Luo L.; Peng S.; Zhang M.; Li X.; Meng X.; Yin C.; Wu X.; Wu X. Chem. Eng. J. 2024, 482, 148836.
[83] Xu X.; Li S.; Cao Z.; Yang S.; Li B. Adv.Energy Mater. 2024, 14(14), 2303971.
[84] Zhong J.; Xu Q.; Li R.; Yuan D. Applied Catalysis B: Environment and Energy 2025, 361, 124615.
[85] Zhang J. J. Energy Storage 2024, 76, 109873.
[86] Shi Y.; Yang B.; Song G.; Chen Z.; Shakouri M.; Zhou W.; Zhang X.; Yuan G.; Pang H. Angew. Chem. Int. Ed. 2024, 63(45), e202411579.
[87] Jia D.; Shen Z.; Lv Y.; Chen Z.; Li H.; Yu Y.; Qiu J.; He X. Adv. Funct. Mater. 2024, 34(2), 2308319.
[88] Gopalakrishnan M.;Kao-ian, W.; Aupama, V.; Etesami, M.; Ganesan, S.; Theerthagiri, J.; Choi, M. Y.; Mohamad, A. A.; Kheawhom, S. Chem. Eng. J. 2024, 484, 149624.
[89] Lu H.; Hu J.; Zhang K.; Zhao J.; Deng S.; Li Y.; Xu B.; Pang H. Adv.Mater. 2024, 36(6), 2309753.
[90] Kim E.; Choi I.; Nam K. W.Electrochim. Acta 2022, 425, 140648.
[91] Yuan G.; Su Y.; Zhang X.; Gao B.; Hu J.; Sun Y.; Li W.; Zhang Z.; Shakouri M.; Pang H. Nati. Sci. Rev.2024, 11 (10), nwae336.
[92] Gong L.; Zhang Y.; Li Z. Mater.Today Chem. 2022, 23, 100731.
[93] Lü T.; Ma W.; Zhan D.; Zou Y.; Li J.; Feng M.; Huang X. Acta Chim. Sinica 2022, 80(5), 640.
[94] Ahmadijokani F.; Tajahmadi S.; Bahi A.; Molavi H.; Rezakazemi M.; Ko F.; Aminabhavi T. M.; Arjmand M. Chemosphere 2021, 264, 128466.
[95] Ji C.; Ren Y.; Yu H.; Hua M.; Lv L.; Zhang W. Chem. Eng. J. 2022, 430, 132960.
[96] Li W.; Liu Y.-Y.; Bai Y.; Wang J.; Pang H. J.Hazardous Mater. 2020, 395, 122692.
[97] Zhang G.; Fan H.; Zhou R.; Yin W.; Wang R.; Yang M.; Xue Z.; Yang Y.; Yu J. J.Hazardous Mater. 2022, 424, 127273.
[98] Bai Z.; Liu Q.; Zhang H.; Yu J.; Chen R.; Liu J.; Song D.; Li R.; Wang J. ACS Appl. Mater. Interfaces 2020, 12(15), 18012-18022.
[99] Huang Z.; Xiong C.; Ying L.; Wang W.; Wang S.; Ding J.; Lu J. Journal of Hazardous Materials 2022, 432, 128700.
[100] Yang W.; Liang H.; Qiao Z. Acta Chim. Sinica 2018, 76(10), 785.
[101] Ning H.; Yang Z.; Yin Z.; Wang D.; Meng Z.; Wang C.; Zhang Y.; Chen Z. ACS Appl. Mater. Interfaces 2021, 13(15), 17781-17790.
[102] Muschi M.;Devautour-Vinot, S.; Aureau, D.; Heymans, N.; Sene, S.; Emmerich, R.; Ploumistos, A.; Geneste, A.; Steunou, N.; Patriarche, G.; De Weireld, G.; Serre, C. J. Mater. Chem. A 2021, 9(22), 13135-13142.
[103] Lin J.-B.; Nguyen T. T.T.; Vaidhyanathan, R.; Burner, J.; Taylor, J. M.; Durekova, H.; Akhtar, F.; Mah, R. K.; Ghaffari-Nik, O.; Marx, S.; Fylstra, N.; Iremonger, S. S.; Dawson, K. W.; Sarkar, P.; Hovington, P.; Rajendran, A.; Woo, T. K.; Shimizu, G. K. H. Science 2021, 374(6574), 1464-1469.
[104] Liang J.; Nuhnen A.; Millan S.; Breitzke H.; Gvilava V.; Buntkowsky G.; Janiak C. Angew. Chem. Int. Ed. 2020, 59(15), 6068-6073.
Outlines

/