In the context of the energy crisis and sustainable development, the electrocatalytic nitrogen reduction reaction (NRR) for ammonia synthesis with zero-carbon emission characteristics holds great promise. Developing highly efficient electrocatalysts with high ammonia yield and Faradaic efficiency (FE) for the nitrogen reduction reaction process(NRR) is crucial for enhancing the efficiency of ammonia synthesis. The modulation of electronic structure through interface engineering and vacancy engineering is a new approach to enhance the performance of catalyst. In this paper, we propose an efficient Cu2S@Co3S4/CF catalyst with core-shell heterojunction structure and sulfur vacancies, which exhibited an ammonia yield of 122 μg·h-1·cm-2 and a Faradaic efficiency of 34.6%, with the ammonia synthesis rate remaining consistently stable over 6 cycles of testing, outperforming most reported similar catalysts. Comprehensive experiments and characterization demonstrate that the high performance of the catalyst is attributed to the Cu2S core will donate electrons to the Co3S4 shell through a uniform interface, which can promote the hydrogenation reactions of NRR while retarding the coupling of *H to form byproduct hydrogen, which contribute to a more optimal balance between the rate of ammonia production and the Faraday efficiency, additionly, the formation of abundant sulfur vacancies significantly enhancing nitrogen adsorption performance in this material. Moreover, the Zn‐N2 battery assembled with Cu2S@Co3S4/CF shows an excellent power density of 14.6 mW cm-2, which enables the simultaneous ammonia production and energy supply. This work demonstrates a promising approach to develop highly efficient electrocatalysts for sustainable ammonia production, with significant implications for addressing the energy crisis and promoting the transition towards a low-carbon economy.
Guo Chaofan
,
Su jinzhan
,
Guo Liejin
. Nitrogen reduction properties of Cu2S@Co3S4/CF core-shell heterojunction catalysts with built-in electric field effect[J]. Acta Chimica Sinica, 0
: 2
-2
.
DOI: 10.6023/A25030091
[1] 郭烈锦. 科技导报 2021, 39(06): 1.
[2] 张谭; 余钟亮; 余嘉祺. 化学学报 2022, 80(06): 788-796.
[3] Ren Y. W.; Li S. F.; Yu C.; et al.J. Am. Chem. Soc. 2024, 146(10): 6409-6421.
[4] Xiao L.; Mou S.; Dai W.; et al.Angew. Chem. Int. Ed. 2024, 63(11): e202319135.
[5] Li M.; Xie Z.; Zheng X.; et al.ACS Catal. 2021, 11(24): 14932-14940.
[6] Zhu G.; Bao W.; Xie M.; et al.Adv. Mater. 2025, 37(5): 2413560.
[7] Liu H. H.; Zhou Z. J.; Chen G. F.; et al. ChemCatChem 2024, 16(5): e202301253.
[8] 詹溯; 章福祥. 化学学报 2021, 79(02): 146-157.
[9] 张晓方; 甘汶; 纪之骄. 化工进展 2025, 44(02): 809-819.
[10] 熊昆; 陈伽瑶; 杨娜. 化学学报 2021, 79(09): 1138-1145.
[11] Wang J.; Nan H.; Tian Y.; et al.ACS Sustainable Chem. Eng. 2020, 8(34): 12733-12740.
[12] 甘汶; 张晓方; 纪之骄. 化工进展 2025: 1-22.
[13] 姚嫣; 付年凯. 有机化学 45: 1-15.
[14] 叶增辉; 刘华清; 张逢质. 有机化学 2024, 44(03): 840-870.
[15] Jiang T.; Liu Y.; Zhang D.; et al.ACS Sustainable Chem. Eng. 2024, 12(15): 5979-5990.
[16] Lim M.; Ma Z. P.; O'Connell, G.; et al. Small 2024, 20(33): 2401333.
[17] Wang C.; Liu Z.; Dong L.; et al.J. Power Sources 2023, 556: 232523.
[18] Liu S.; Wang M.; He Y.; et al.Adv. Mater. 2023, 35(51): 2303703.
[19] Liu M.; Liu S.; Xu Q.; et al. Carbon Energy 2023, 5(6): e300.
[20] Song M.; Xing Y.; Li Y.; et al.Inorg. Chem. 2023, 62(40): 16641-16651.
[21] Yang K. W.; Han S. H.; Cheng C. Q.; et al. JACS 2024, 146(19): 12976-12983.
[22] 应霞薇; 浮建军; 曾敏. 化学学报 2022, 80(04): 503-509.
[23] Cheng D.; Chenglong Q.; Zhongying F.; et al. Nano Energy 2021, 92: 106784.
[24] Zhang J.; Chen C.; Zhang R.; et al.J. Colloid Interface Sci. 2024, 658: 934-942.
[25] Lin B.; Fang B.; Wu Y.; et al.ACS Catal. 2021, 11(3): 1331-1339.
[26] Zhang G.; Yuan X.; Xie B.; et al.Chem. Eng. J. 2022, 433: 133670.
[27] Chen S.; Zhou Z.; Bai B.; et al. CHEMELECTROCHEM 2022, 9(19): e202200625.
[28] Luo Y.; Chen K.; Wang G.; et al.Inorg. Chem. Front. 2023, 10(5): 1543-1551.
[29] Zheng H.; Zhang Z.; Feng C.; et al.New J. Chem. 2023, 47(48): 22350-22359.
[30] Zhang J.; Tian H.; Yu Y.; et al.Catal. Lett. 2021, 151(9): 2502-2512.
[31] You M.; Yi S.; Hou X.; et al.J. Colloid Interface Sci. 2021, 599: 849-856.
[32] Guo C.; Yang S.; Wei L.; et al.J. Mater. Chem. A 2025, 13(5): 3634-3644.
[33] Guo C.; Yang S.; Wei L.; et al.ACS Sustainable Chem. Eng. 2025, 13(4): 1604-1616.
[34] Sun X.; He Y.; Wang M.; et al. ACS Nano 2025, 19(8): 8189-8199.
[35] Li X.; Wang X.; Guo A.; et al.J. Colloid Interface Sci. 2025, 678: 1143-1152.
[36] Zhang L.; Hu Z. Mater.Des. 2021, 209: 110006.
[37] Zhang J.; Tian X.; Liu M.; et al. JACS 2019, 141(49): 19269-19275.
[38] Woo R.; Lee K.; An B.-S.; et al.Chem. Eng. J. 2023, 475: 146354.
[39] Okanishi T.; Katayama Y.; Muroyama H.; et al.Electrochim. Acta 2015, 173: 364-369.
[40] Feng Y.; Jiao L.; Zhuang X.; et al.Adv. Mater. 2025, 37(1): 2410909.
[41] Wu Y.; Zhang M.; Zhao Z.; et al. Energy & Fuels 2025, 39(3): 1507-1540.
[42] 王亚飞; 徐良晨; 姚向昱. 当代化工研究 2024, (20): 15-17.
[43] Ghosh R. S.; Le T. T.; Terlier T.; et al.ACS Catal. 2020, 10(6): 3604-3617.
[44] Ghosh R. S.; Harold M. P.; Wang D. Chem. Eng. J. 2021, 418: 129065.
[45] Li H.; Wang Y.; Wei K.; et al.Adv. Sci. 2025, 12(15): 2417773.
[46] Chu K.; Weng B.; Lu Z.; et al.Adv. Sci. 2025, 12(11): 2416053.
[47] Guragain M.; Kafle A.; Adesope Q.; et al.ACS Catal. 2024, 14(23): 18085-18094.
[48] Shi K.; Yu C.; Yuan J.; et al. Applied Catalysis B: Environment and Energy 2025, 376: 125441.
[49] Kim S.; Kim M.; Yeo B. C.; et al.J. Mater. Chem. A 2023, 11(45): 24686-24697.
[50] Huang K.; Tang K.; Wang M.; et al.Adv. Funct. Mater. 2024, 34(24): 2315324.
[51] Shang W.; Yang X.; Sang W.New J. Chem. 2022, 46(10): 4603-4610.
[52] Fu H.; Yang X.; An X.; et al.SENSORS AND ACTUATORS B-CHEMICAL 2017, 252: 103-115.
[53] Zhang H.; Wang X.; Chen C.; et al.Int. J. Hydrogen Energy 2015, 40(36): 12253-12261.
[54] Wang D.; Chen Z.; Gu K.; et al. JACS 2023, 145(12): 6899-6904.
[55] Lv X. W.; Liu Y. P.; Wang Y. S.; et al.Applied Catalysis B-Environmental 2021, 280: 119434.
[56] Ren J.; Chen L.; Wang H.; et al.ACS Appl. Mater. Interfaces 2021, 13(10): 12106-12117.
[57] Shen Z.; Xu F.; Cheng X.; et al. ACS Nano 2025, 19(4): 4611-4621.
[58] Zhang M.; Peng H.; Sun K.; et al.Chin. J. Chem. 2022, 40(23): 2763-2772.