Article

Effect of ferroelastic Zr0.92Y0.08O2 on the properties of the layered LiMnO2 cathode materials

  • LU Jicheng ,
  • GOU Lei ,
  • LIU Xiaojiu ,
  • FANG Xiaoyong ,
  • LI Donglin
Expand
  • aNew Energy Materials and Devices Laboratory, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China;
    bCollege of Chemistry and Chemical Engineering, Tarimu University, Alar, Xingjiang 843300, China

Received date: 2025-03-12

  Online published: 2025-06-20

Supported by

national natural science of Foundation of China(No.22179011; No.21473014).; Xianyang City's Qinchuangyuan Special Project for Scientific and Technological Innovation (Approval Number:L 2022-QCYZX-GY-005)

Abstract

Layered LiMnO₂ (LMO) with an orthorhombic structure is an abundant and inexpensive manganese-based cathode material for lithium-ion batteries, but it suffers from challenges such as poor charge-discharge cycle stability. To address this issue, nanoscale Y-stabilized ZrO2 (Zr0.92Y0.08O2, YSZ) is coated on LiMnO2 crystallites by a wet-chemical method to improve its charge-discharge cycle performance in this paper. XRD and TEM analyses show that YSZ in the synthesized material has a tetragonal structure with a size distribution of 3-15 nm, coating LMO particles as thin layers or particles to form LMO@YSZ nanocomposites. HRTEM analysis reveals the presence of 90° ferroelastic domains in the tetragonal phase within the nanoscale YSZ surrounding LMO particles. Charge-discharge tests demonstrate that the maximum discharge capacity is 192 mAh·g-1 at a current density of 20 mA·g-1. After 300 cycles at 200 mA·g-1, the capacity of the LMO@YSZ composite remains at 59% of its maximum capacity, significantly suppressing the decay of charge-discharge specific capacity compared to 36% for pure LiMnO₂. SEM observations reveal that after 300 charge-discharge cycles, the uncoated LMO electrode contains cracks approximately 700 nm wide and over 40 μm long, which interweave to form isolated "island-like" regions in the electrode. In contrast, cracks are hardly observable in the YSZ-coated electrode, with particles in close contact. The number of cracks in the LMO@YSZ composite electrode are significantly suppressed. Considering ferroelastic domains in YSZ of the composite, it is inferred that the improved charge-discharge cycle performance of the LMO@YSZ composite is attributed to reduced or inhibited cracking from the experimental results. This may originate from the electrochemical-ferroelastic coupling effect between the LMO cathode material and YSZ ferroelastic material during charge-discharge processes, delivering stress energy in LMO to YSZ. As a result, the ferroelastic properties of YSZ dissipate the stress energy in the cathode material, effectively suppressing crack generation in the electrode without hindering electron and lithium-ion diffusion, thereby improving the charge-discharge cycle performance of the LiMnO₂ electrode.

Cite this article

LU Jicheng , GOU Lei , LIU Xiaojiu , FANG Xiaoyong , LI Donglin . Effect of ferroelastic Zr0.92Y0.08O2 on the properties of the layered LiMnO2 cathode materials[J]. Acta Chimica Sinica, 0 : 3 -3 . DOI: 10.6023/A25030072

References

[1] Ma J.; Liu T.-T.; Ma J.; Zhang C.; Yang J.-H. Adv. Sci. 2024, 11, 2304938.
[2] Tu X.- Y.; Shu K.- Y.J. Solid State Electrochem 2008, 12, 245.
[3] Yang S.‐H.; Hackney, S.-A.; Armstrong, A.-R.; Bruce, P.-G.; Gitzendanner, R; Johnson, C.-S.; Thackeray, M.-M. J. Electrochem. Soc. 1999, 146, 2404.
[4] Jang Y.-I.; Chou F.-C.; Huang B.-Y.; Donald S.-R.; Chiang Y.-T.J. Phys. Chem. Solids 2003, 64, 2525.
[5] Benedek R.J. Phys. Chem. C 2017, 121, 22049
[6] Lu J.; Zhan C.; Wu T.-P.; Wen J.-G.; Kropf A.-J.; Wu H.-M.; Miller D.-J.; Elam J.-W.; Sun Y.-K.; Qiu X.-P.; Amine Khalil. Nat Commun 2014, 5, 5693.
[7] Chen K.-Y.; Lei M.; Yao Z.-G.; Zheng,Y.-J.; Hu J.-L.; Lai C.-Z.; Li C.-L. Sci. Adv.2021, 7, eabj1491.
[8] Yang Q.-F.; Yao Z.-G.; Lai C.-Z.; Li C.-L.Energy Storage Mater. 2022, 50, 819.
[9] Kötschau I.- M.; Dahn J.-R.J. Electrochem. Soc 1998, 145, 2672.
[10] Zhu X.-H.; Meng F.-Q.; Zhang Q.-H.; Xue L.; Liu Q.; Gu L.; Ren Y.; Xia H. Nat. Sustainability 2021, 4, 392.
[11] Macaulay B.; Kramer D. J.Electrochem. Soc 2024, 171, 030509.
[12] Li J.-Y.; Zhou Z.-Y.; Luo Z.-Y.; He Z.-J.; Zheng J.-C.; Li,Y.-J.; Mao J.; Dai K.-H.Sustainable Mater.Technol 2021, 29, 00305.
[13] Heenan T.-M.-M.; Wade, A.; Tan, C.; Parker, J.-E.; Matras, D.; Leach, A.-S.; Robinson, J.-B.; Llewellyn, A.; Dimitrijevic, A.; Jervis, R.; Quinn, P.-D.; Brett, D.-J.-L.; Shearing, P.-R. Adv. Energy Mater 2020, 10, 2002655.
[14] Wang W.-Z.; Wu L.-Y.; Li Z.-W .; Huang K.-S.; Chen Z.-Y .; Lv C.; Dou H.; Zhang X.-G. Chemelectrochem, 2021, 8, 2014.
[15] Geng C.-X.; Rathore D.; Heino D.; Zhang N.; Hamam I.; Zaker N.; Botton G.-A.; Omessi R.; Phattharasupakun N.; Bond T.; Yang C.-Y.; Dahn, J.-R. Adv. Energy Mater. 2022, 12, 2103067.
[16] Kim H .; Lim J.-H.; Lee T.; An J.; Kim H.; Song H .; Lee H.; Choi J.-W.; Kang J.-H.;ACS Energy Lett. 2023 8, 3460.
[17] Zhao H.-Y.; Liu S.- S.; Liu X.-Q.; Tan M.; Wang Z.-W.; Cai Y.; Komarneni S. Ceram. Int 2016, 42, 9319.
[18] Liu G.-L.; Li M.-L.; Wu,N.-T.; Cui L.; Wu N.-T.; Cui L.; Huang X.-X.; Liu X.-M.; Zhao Y.-X.; Chen, H.-P. Yuan W.-W.; Bai Y. J.Electrochem. Soc 2018 ,165, 3040.
[19] Salje E.-K.-H. Contemp. Phys.2000, 41, 79.
[20] Chien F.-R.; Ubic F.-J.; Prakash,V.; Heuer A.-H.Acta Mater. 1998, 46, 2151.
[21] Yang, Q; Li J.-B.; Yang L.; Tian H. J.Chin.Electr.Microsc.Soc.2022, 41, 8(in Chinese).
(杨清, 李俊宝, 杨丽, 田鹤, 电子显微学报, 2022, 41, 8.)
[22] Li J.-B.; Zhou Q.-Q.; Yang L.; Zhou Y.-C.; Zhao J.; Huang J.-Y.; Wei Y.-G.J. Alloys Compd. 2021, 889, 161557.
[23] Kim H.; Moon J.-Y.; Lee J.-H.; Lee J.-K.; Heo Y.-W.; Kim J.-J.; Lee H.-S.J. Nanosci. Nanotechnol.2014, 14, 7961.
[24] Huang W.; Zhuang W.-D.; Li N.; Gao M.; Li W.-J.; Xing X.-R.; Lu S.-G. Solid state Ionic 2019, 343, 11508.
[25] Zhao M.; Jia Q.-Y.; Liu H.-W.; Lei Y.-X.; Pan,W. Rare Metal Mat Eng 2013, 42, 473(in Chinese).
(赵蒙, 贾秋阳, 刘瀚文, 雷宇雄, 潘伟, 稀有金属材料与工程, 2013, 42, 473.)
[26] Starschich S.; Böttger U. J. Appl Phys 2018, 123, 044101.
[27] Díaz-Parralejo, A.; Maya-Retamar, D.; Calderón-Godoy, M.; Sánchez-González, J.; Ortiz, A.-L. Ceram. Int. 2023, 49,19552.
[28] Mercer C.; Williams J.-R.; Clarke D.-R.; Evans, A.-G. Proc. R. Soc. A 2007, 463, 1393.
[29] Tsukuma K.; Yamashita I.;Kusunose T. J. Am. Ceram. Soc 2008, 91,813
[30] Yang Z.-Q.; Yang F.; Liu Y. Journal of Nanjing Normal University(Engineering and Technology Edition) 2010, 10, 49(in Chinese).
(杨志琴, 杨飞, 刘荣,南京师范大学学报(工程技术版), 2010, 10, 49.)
[31] Su Z.; Ye S.-H.; Wang Y.-L.Acta Chim. Sinica 2009, 67, 2413(in Chinese).
(粟智, 叶世海, 王永龙, 化学学报, 2009, 67, 2413.)
[32] Nagasubramanian A.; Yu D.-Y.-W.; Hoster, H.; Srinivasan, M. J.Solid State Electrochem 2014, 18, 1915.
[33] Lee S.; Kang S.; Choi,Y.; Kim J.; Yang J.; Han D.; Borkiewicz O.-J.;Nam K.-W.; Zhang J.; Kang Y.-M.J. Am.Chem. Soc 2024, 146, 33845.
[34] Jang Y.-II.; Huang B.-Y.; Wang H.-F.; Sadoway D.-R.; Chiang Y.-M.J. Electrochem Soc 1999, 146, 3217.
[35] Luo F.-K.;Wei C.-C.; Zhang C.; Gao H.; Niu J.-Z.; Ma,W.-S.; Peng Z.-Q.; Bai Y.-W.J. Energy Chem 2020, 44, 138.
[36] Liu J.-D.; Wu Z.-H.; Yu M.; Hu H.-L.; Zhang Y.-D.; Zhang K.; Du Z.-X.; Cheng F.-Y.; Chen J. Small, 2022, 18, 2106337.
[37] Liu L.-H.; Chen S.-L.; Liu F.; Xiang Q.-J.; Feng X.-H.; Qiu, G.-H. Chin. J. Inorg. Chem 2015, 31, 703(in Chinese).
(刘立虎, 陈述林, 刘凡, 向全军, 冯雄汉, 邱国红, 无机化学学报, 2015, 31, 703.)
[38] Cho, J. Chem. Mater 2001, 13, 4537.
[39] Fan G.-X.; Zeng,Y.-W.; Cheng R.-S.; Lü G.-L. Inorg. Chim. Acta 2008,24, 944(in Chinese).
(范广新, 曾跃武, 陈荣升, 吕光烈, 无机化学学报 2008, 24, 944.)
[40] Lee J.; Yang Y.; Jeong M.; Dupre N.; Avdeev M.; Yoon W.-S.; Choi S.-Y.; Kang B. Chem.Mater. 2021, 33, 5115.
[41] Ye D.-L.; Zeng G.; Nogita K.; Ozawa K.; Hankel M.; Searles D.-J.; Wang, L.-Z. Adv. Funct. Mater. 2015, 25, 7488.
[42] Gou L.; Yang Z.-Q.; Yu J.-H.; Fan X.-Y.; Li D.-L.; Li H. Chem.J. Chinese Universities, 2024, 45, 20240259(in Chinese).
(苟蕾, 杨哲祺, 余金花, 樊小勇, 李东林, 李辉, 高等学校化学学报, 2024, 45, 20240259.
Outlines

/