Relaxation of Nanoscale Polyimide Ultrathin Films

  • 徐全印 ,
  • 石欣阳 ,
  • 罗锦添 ,
  • 左彪
Expand
  • School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

Received date: 2025-05-29

  Online published: 2025-07-03

Supported by

National Natural Science Foundation of China (No. 22303084, 52373025).

Abstract

Polyimide (PI) films are widely used in semiconductor packaging due to their excellent properties, including low dielectric constant, high temperature resistance, and enhanced thermal and chemical stability. In recent decades, the development of modern nanotechnology has led to devices being downsized to the nanoscale, and packaging these nanodevices would require ultrathin films of PI. Understanding the thermal transition and molecular relaxation of the PI ultrathin films is essential for high-quality microelectronic packaging. Although the dynamics of bulk PI have been extensively studied using techniques such as broadband dielectric spectroscopy (BDS) and dynamic mechanical analysis (DMA), the impact of reduced film thickness on these dynamics remains unclear. In this study, we used temperature-variable spectroscopic ellipsometry to examine the thermal expansion and molecular relaxation of PI films as thin as 6 nm, and concurrently, the bulk dynamics of PI were investigated using BDS and DMA for comparison purposes. The PI films were prepared by the heat imidization of poly(amide acid) films, which were polymerized using biphenyltetracarboxylic diandhydride (BPDA) and 4, 4'-oxydianiline (ODA). In 300-nm-thick films, we observed the α-relaxation arising from the segmental cooperative rearrangement, and the β-relaxation originating from phenyl ring motion at approximately 260 °C (Tα) and 99 °C (Tβ), respectively. As the film thickness decreased below 100 nm, Tα decreased. Specifiacally, Tα decreased by 30 °C for 6-nm PI films. In contrast, Tβ remains unchanged in the ultrathin films, indicating a thickness-independent β-relaxation. Furthermore, the coefficients of thermal expansion increased remarkably with a reduction in film thickness across various temperature ranges (i.e., T < Tβ, Tβ < T < Tα, and T > Tα), indicating that ultrathin PI films are more sensitive to temperature variations than bulk samples. Such observation of the thickness-dependent thermal expansivity and Tα of ultrathin PI films provide a deep understanding of the effects of nanoconfinement on the dynamics of polymers with rigid chain backbones, which is also meaningful for designing and fabricating stable nano-devices based on ultrathin PI films.

Cite this article

徐全印 , 石欣阳 , 罗锦添 , 左彪 . Relaxation of Nanoscale Polyimide Ultrathin Films[J]. Acta Chimica Sinica, 0 : 25050197 -25050197 . DOI: 10.6023/A25050197

References

[1] 丁孟贤聚酰亚胺—化学、结构与性能的关系及材料; 第二版, 科学出版社: 北京, 2012.
[2] Khan A. I.; Daus A.; Islam R.; Neilson K. M.; Lee H. R.; Wong H. S. P.; Pop E. Science2021, 373, 1243.
[3] Liu J.; Ni H.; Gao H.; Yang, S. Spacecraft Environm. Eng.2014, 31, 470(in Chinese). (刘金刚, 倪洪江, 高鸿, 杨士勇, 航天器环境工程, 2014, 31, 470.)
[4] Ni H.; Liu J.; Wang Z.; Yang, S. J. Ind. Eng. Chem.2015, 28, 16.
[5] Dong J.; Li L.; Niu Y.; Pan Z.; Pan Y.; Sun L.; Tan L.; Liu Y.; Xu X.; Guo X.; Wang Q.; Wang, H. Adv. Energy Mater.2024, 14, 2303732.
[6] Niu H.; Bai X.; Huang Y.; Wang, C. Acta Chim. Sin.2005, 63, 1391(in Chinese). (牛海军, 白续铎, 黄玉东, 汪成. 化学学报, 2005, 63, 1391.)
[7] Yang J.; Zhan H.; Zhou X.; Hu J.; Liu Y.; Gu Y.; Liu, X. Acta Chim. Sin.2009, 67, 875(in Chinese). (杨进, 詹怀宇, 周雪松, 胡健, 刘辕. 化学学报, 2009, 67, 875.)
[8] Yu Q.; Zhu L.; Liu T.; Babu S. S.; Zheng Z.; Liu S.; Chi Z.; Zhang Y.; Xu, J. Adv. Mater. Interfaces2021, 8, 2001786.
[9] Fan Z.; Liu S.; Chi Z.; Zhang Y.; Xu, J. Acta Polym. Sin.2021, 52, 750(in Chinese). (范振国, 刘四委, 池振国, 张艺, 许家瑞. 高分子学报, 2021, 52, 750.)
[10] Nimbalkar P.; Bhaskar P.; Kathaperumal M.; Swaminathan M.; Tummala R. R. Polymers2023, 15, 3895.
[11] Soles C. L.; Ding Y. Science2008, 322, 689.
[12] Luo J.; Xu Q.; Xu W.; Zuo, B. Acta Polym. Sin.2025, 56, 539(in Chinese). (罗锦添, 徐全印, 徐文生, 左彪. 高分子学报, 2024, 56, 539.)
[13] Tian H.; Xu Q.; Zhang H.; Priestley R. D.; Zuo, B. Appl. Phys. Rev.2022, 9, 011316.
[14] Yang Y.; Tian H.; Napolitano S.; Zuo, B. Prog. Polym. Sci.2023, 144, 101725.
[15] Chen Y.; Zhou D.; Hu, W. Acta Polym. Sin.2021, 52, 423(in Chinese). (陈咏萱, 周东山, 胡文兵. 高分子学报, 2021, 52, 423.)
[16] Keddie J. L.; Jones R. A. L.; Cory, R. A. Europhys. Lett.1994, 27, 59.
[17] Forrest J. A.; Dalnoki-Veress, K. Adv. Colloid Interface Sci.2001, 94, 167.
[18] Fukao K.; Miyamoto, Y. Phys. Rev. E2000, 61, 1743.
[19] Roth C. B.; Dutcher, J. R. J. Electroanal. Chem.2005, 584, 13.
[20] Yang Z.; Fujii Y.; Lee F. K.; Lam C.-H.; Tsui, O. K. C. Science2010, 328, 1676.
[21] Yang Y.; Shen H.; Zuo B. Huaxue Tongbao2024, 87, 258(in Chinese). (阳禹辉, 沈华琦, 左彪. 化学通报, 2024, 87, 258.)
[22] Reiter, G. Macromolecules1994, 27, 3046.
[23] Luo J.; Zha H.; Tian H.; Zuo, B. Chin. J. Polym. Sci.2024, ASAP.
[24] Wang Q.; Wang W.; Wu C.; Luo J.; Zhou J.; Zuo B. Macromolecules2024, 57, 10112.
[25] Xu Q.; Zhu N.; Fang H.; Wang X.; Priestley R. D.; Zuo, B. ACS Macro Lett.2021, 10, 1.
[26] Richard, A. L. Faraday Discuss1994, 98, 219.
[27] Tian H.; Luo J.; Tang Q.; Zha H.; Priestley R. D.; Hu W.; Zuo B. Nat. Commun.2024, 15, 6082.
[28] Serghei A.; Tress M.; Kremer F. Macromolecules2006, 39, 9385.
[29] Wang T.; Pearson A. J.; Dunbar A. D. F.; Staniec P. A.; Watters D. C.; Coles D.; Yi H.; Iraqi A.; Lidzey D. G.; Jones, R. A. L. Eur. Phys. J. E2012, 35, 129.
[30] Liu D.; Qin H.; Zhang J.; Wang, T. Phys. Rev. E2016, 94, 052503.
[31] Campoy-Quiles M.; Sims M.; Etchegoin P. G.; Bradley, D. D. C. Macromolecules2006, 39, 7673.
[32] Gomopoulos N.; Saini G.; Efremov M.; Nealey P. F.; Nelson K.; Fytas G. Macromolecules2010, 43, 1551.
[33] Bai F.; Jiang Y.; Li X.; Dong J.; Zhao X.; Zhang, Q. Acta Polym. Sin.2024, 55, 1393(in Chinese). (白帆, 江怡雯, 李琇廷, 董杰, 赵昕, 张清华. 高分子学报, 2024, 55, 1393.)
[34] Kim Y. H.; Moon B. S.; Harris F. W.; Cheng, S. Z. D. J. Therm. Anal.1996, 46, 921.
[35] Comer A. C.; Kalika D. S.; Rowe B. W.; Freeman B. D.; Paul D. R. Polymer2009, 50, 891.
[36] Khazaka R.; Locatelli M. L.; Diaham S.; Bidan P.; Dupuy L.; Grosset, G. J. Phys. D: Appl. Phys.2013, 46, 065501.
[37] Lunkenheimer P.; Loidl A.; Riechers B.; Zaccone A.; Samwer K. Nat. Phys.2023, 19, 694.
[38] Luo P.; Wolf S. E.; Govind S.; Stephens R. B.; Kim D. H.; Chen C. Y.; Nguyen T.; Wąsik P.; Zhernenkov M.; McClimon B.; Fakhraai Z. Nat. Mater.2024, 23, 688.
[39] Luo J.; Ye K.; Li J.; Zuo, B. Rev. Sci. Instrum.2025, 96, 053904.
[40] Ding Y.; Bikson B.; Nelson J. K. Macromolecules2002, 35, 912.
[41] Ni H.; Xing Y.; Dai X.; Li J.; Zhang D.; Yang S.-Y.; Chen X.-B. J. Mater.2019, 47, 100.
[42] Wang C.; Zhao H.; Li G.; Jiang, J. Acta Chim. Sin.2010, 68, 449(in Chinese). (汪称意, 赵辉鹏, 李光, 江建明. 化学学报, 2010, 68, 449.)
[43] Huang W.; Yan D.; Lu Q.Chem. J. Chinese U. 2002, 23, 2005(in Chinese). (黄卫, 颜德岳, 路庆华. 高等学校化学学报, 2002,23, 2005.)
[44] Zhao L.; Huang Y.; Piao Y.; Meng X.; Song Y.; Long, J. Acta Chim. Sin.2009, 67, 1013(in Chinese). (赵亮, 黄玉东, 朴艳梅, 孟祥丽, 宋元军, 龙军. 化学学报, 2009, 67, 1013.)
[45] Wang X.; Li Y.-F.; Ma T.; Zhang S.; Gong C. Polymer2006, 47, 3774.
[46] Havriliak S.; Negami S. Polymer1967, 8, 161.
[47] Fulcher, G. S. J. Am. Ceram. Soc.1925, 8, 339.
[48] Tammann G.; Hesse, W. Z. Anorg. Allg. Chem.1926, 156, 245.
[49] Luo J.; Wang X.; Tong B.; Li Z.; Rocchi L. A.; Di Lisio V.; Cangialosi D.; Zuo, B. J. Phys. Chem. Lett.2024, 15, 357.
[50] Wang F.; Sun, P. Acta Polym. Sin.2021, 52, 840(in Chinese). (王粉粉, 孙平川. 高分子学报, 2021, 52, 840.)
[51] Yuan Q.; Yang Z.; Xu, W. Sci. Sin. Chim.2023, 53, 616(in Chinese). (袁琦璐, 杨镇岳, 徐文生. 中国科学(化学), 2023, 53, 616.)
[52] Zhang Q.; Luo W.; Gao L.; Chen D.; Ding, M. J. Appl. Polym. Sci.2004, 92, 1653.
[53] Salez T.; Salez J.; Dalnoki-Veress K.; Raphaël E.; Forrest, J. A. Proc. Natl. Acad. Sci.2015, 112, 8227.
[54] Ngai K. L.; Rizos A. K.; Plazek, D. J. J. Non-Cryst. Solids1998, 235-237, 435.
[55] Ngai K. L.; Paluch M.; Rodríguez-Tinoco, C. Phys. Chem. Chem. Phys.2017, 19, 29905.
[56] Ngai K. L.; Paluch, M. J. Chem. Phys.2004, 120, 857.
[57] Hartmann L.; Gorbatschow W.; Hauwede J.; Kremer, F. Eur. Phys. J. E2002, 8, 145.
[58] Wang C.; Zhai L.; Gao M.; Jia Y.; Mo S.; He M.; L, F. Sci. Sin. Chim.2022, 52, 437(in Chinese). (王畅鸥, 翟磊, 高梦岩, 贾妍, 莫松, 何民辉, 范琳. 中国科学, 2022, 52, 437.)
Outlines

/