Communication

Dearomative 1,2-Allylation/Aminocarbonylation Reaction of Chromium-Bound Arenes

  • Weilong Zeng ,
  • Haosong Wang ,
  • Mingyang Wang ,
  • Wei Li , *
Expand
  • State Key Laboratory of Soil Pollution Control and Safety, Department of Chemistry,Zhejiang University, Hangzhou 310058
* E-mail:

For the VSI “Rising Stars in Chemistry”.

Received date: 2025-05-09

  Online published: 2025-07-07

Supported by

National Natural Science Foundation of China(22271251)

National Natural Science Foundation of China(22471238)

Fundamental Research Funds for the Central Universities(226-2023-00016)

Fundamental Research Funds for the Central Universities(226-2024-00003)

Abstract

The rapid and selective assembly of complex and high-value structures from fundamental starting materials remains one of the most important goals in organic chemistry. The carbonylative 1,2-difunctionalization of olefins is of great attraction since it can simultaneously install a synthetically significant carbonyl group and another functional group across C=C double bonds, providing a straightforward and efficient method for the formation of high-value β-functionalized carbonyl compounds. Compared with alkenes, dearomative carbonylative 1,2-difunctionalization of arenes is much less studied even though this reaction would not only introduce two important functional groups but also convert flat arenes into three-dimensional architectures of increasing interest in medicinal chemistry. The big challenges of this reaction arise from breaking aromatic resonance stabilization and selectivity issues. Herein, we describe a novel dearomative 1,2-allylation/aminocarbonylation of chromium-bound arenes, which enabled rapid and selective incorporation of an allyl group and an amide group into arene π-systems to produce a wide range of β-allylated amide compounds containing 1,3-cyclohexadiene rings. The η6-coordination using Cr(CO)3 unit not only activated the inert benzene π-bond towards dearomatization but also offered the CO source for the carbonylation process. The synthetic potential and the practicability of this method were well demonstrated by the CO-gas-free reaction conditions, the broad substrate scope, and the excellent functional group tolerance. A general procedure for this dearomative 1,2-allylation/aminocarbonylation reaction is depicted as follows: under N2 atmosphere, allyltrimethylsilane (0.40 mmol, 2.0 equiv.) was slowly added to a solution of (η6-arene)Cr(CO)3 (0.20 mmol, 1.0 equiv.) and Me4NF (0.60 mmol, 3.0 equiv.) in tetrahydrofuran (THF) (2.0 mL) at 0 ℃. The reaction mixture was stirred at 0 ℃ for 4 h, then cooled to -45 ℃, followed by the addition of N-chloroamine (0.80 mmol, 4.0 equiv.). The reaction mixture was allowed to warm to 30 ℃ gradually within 20 min and stirred at 30 ℃ for another 10 h. The solvent was evaporated in vacuo and the crude mixture was purified by preparative thin-layer chromatography (TLC) to yield the corresponding dearomative allylation/aminocarbonylation product.

Cite this article

Weilong Zeng , Haosong Wang , Mingyang Wang , Wei Li . Dearomative 1,2-Allylation/Aminocarbonylation Reaction of Chromium-Bound Arenes[J]. Acta Chimica Sinica, 2025 , 83(8) : 803 -809 . DOI: 10.6023/A25050151

1 引言

从基础化学原料出发, 快速且选择性地构建复杂高价值分子是有机化学领域最重要的研究目标之一[1]. 烯烃和芳烃作为储量丰富、价格低廉和易于修饰的化学原料, 相关转化符合“廉价原料-高附加值产物”的合成逻辑, 是有机合成中理想的反应底物[1-2]. 烯烃的羰基化1,2-双官能化反应能够通过一步反应, 在C=C双键上安装一个极为有用的羰基官能团和另一个官能团, 为构建高价值β-官能化羰基化合物提供了一种直接高效的方法[3]. 与烯烃相比, 芳烃的去芳构羰基化1,2-双官能化研究较少(图1A)[4]. 该反应不仅可以一次引入两个重要官能团, 还能将平面芳环结构转化为药物化学领域日益重视的三维立体结构[5], 具有重要研究价值.
图1 苯环π体系的去芳构1,2-烯丙基化/氨羰基化反应

Figure 1 Dearomative 1,2-allylation/aminocarbonylation reaction of arene π-systems

近年来, 我们课题组基于铬η6-配位活化苯环策略, 发展了一系列能适用于简单芳烃(例如苯、甲苯和二甲苯等)的去芳构化反应[6]. 相较于传统依赖高能、高压条件来实现简单芳烃去芳构化反应的策略, 该策略通过对惰性苯环大π-键的本质活化为实现更为通用的去芳构化反应提供了可选方法[7-9]. 其中, 以N-氯胺为亲电试剂, 我们成功实现多种去芳构羰基化反应, 包括去芳构化三氟甲基化/氨羰基化反应以及胺化/氨羰基化反应(图1B)[6h].
另一方面, 烯丙基化反应得益于烯丙基官能团的实用性, 已成为有机合成中最常使用的官能团化反应之 一[10-11]. 相比于其他芳环, 由于苯环更高的共轭稳定化能及选择性调控难题, 苯环去芳构烯丙基化反应的发展相对滞后[4]. 鉴于烯丙基与酰胺基团[12]的重要合成价值, 以及芳烃去芳构羰基化1,2-双官能团化反应体系的稀缺性, 开发高效、高选择性的相关新方法具有迫切需求. 在此, 我们报道一种铬介导的苯环去芳构1,2-烯丙基化/氨羰基化双官能化反应, 并以良好的反应选择性和出色的官能团耐受性实现了一系列β-烯丙基化酰胺化合物的高效合成(图1C).

2 结果与讨论

2.1 反应条件优化

首先, 以(η6-苯)Cr(CO)3、烯丙基三甲基硅烷及N-氯代吗啉为模版反应原料开展反应条件优化研究(表1). 经过仔细的反应条件筛选优化, 最终成功实现了苯环的去芳构1,2-烯丙基化/氨羰基化反应, 在最优的一锅法条件下以82%收率获得目标双官能化的1,3-环己二烯产物1(表1, Entry 1), 具体条件为: 将(η6-苯)Cr(CO)3 (0.1 mmol)、烯丙基三甲基硅烷(0.2 mmol)与四甲基氟化铵(Me4NF, 0.3 mmol)溶解于四氢呋喃(THF)中, 置于0 ℃下搅拌4 h, 经历烯丙基亲核加成步骤后, 继续与N-氯代吗啉进行氨羰基化, 完成反应. 根据我们之前[7]的研究, 类比推测产物1的相对构型为反式. 对照实验表明烯丙基试剂与其活化试剂的种类对反应结果影响显著: 使用烯丙基三丁基锡替代烯丙基三甲基硅烷时, 反应完全被抑制(表1, Entry 2); 其他碱性活化剂如叔丁醇钾(KOtBu)与四正丁基氟化铵(TBAF)均无法促进反应进行(Entries 3, 4). 溶剂效应研究表明: 使用N,N-二甲基甲酰胺(DMF)时收率无明显变化(表1, Entry 11 vs. Entry 1), 而乙二醇二甲醚(DME)和二甲基亚砜(DMSO)等溶剂使反应收率降低(Entries 6~10), 二氯甲烷(DCM)作为溶剂时不发生反应(Entry 5). 制备中间体铬阴离子的温度在一定范围内对反应收率无显著影响(Entries 12~14). 值得注意的是, Cr(CO)3基团自身释放的CO足以满足羰基化需求, 无需额外通入CO气体, 这极大提升了该羰基化反应的操作简便性与安全性.
表1 反应条件考察a

Table 1 Investigation of the reaction conditions

Entry Deviation from standard conditions Yieldb/%
1 none 82
2 instead of 0
3 KOtBu instead of Me4NF 0
4 TBAF instead of Me4NF Trace
5 DCM instead of THF 0
6 MeCN instead of THF 8
7 DMSO instead of THF 55
8 DME instead of THF 66
9 EtOAc instead of THF 71
10 DMA instead of THF 74
11 DMF instead of THF 81
12 30 ℃ instead of 0 ℃ 77
13 -10 ℃ instead of 0 ℃ 71
14 -45 ℃ instead of 0 ℃ 79

a反应条件: 烯丙基三甲基硅烷(0.20 mmol, 2.0 equiv.)加入到(η6-benzene)Cr(CO)3 (0.10 mmol, 1.0 equiv.)和Me4NF (0.30 mmol, 3.0 equiv.)的THF (1.0 mL)溶液中, 0 ℃氮气保护下反应4 h, 降温至-45 ℃加入N-氯代吗啉(0.40 mmol, 4.0 equiv.). 然后升温至30 ℃继续反应10 h. b分离收率.

2.2 反应底物拓展

在确定了反应的最优条件后(表1, Entry 1), 首先以(η6-苯)Cr(CO)3为标准底物, 对N-氯胺种类和烯丙基硅烷试剂的普适性进行了考察(表2). 实验表明: 多种环状N-氯代胺(包括五元至七元环的单环及双环衍生物)均能适用该反应, 并以良好收率获得去芳构1,2-烯丙基化/氨羰基化产物(1~6). 非环状N-氯代胺、N-氯-N-甲基-1-苯基甲胺亦可通过该体系发生转化, 以52%收率得到产物7. 值得注意的是, 反应体系还可以兼容伯胺甚至氨基酸衍生的N-氯代胺, 从而成功合成各种二级酰胺类产物(8~10, 收率中等). 需要说明的是, 由于伯胺N-氯代衍生物非常不稳定导致难以分离提纯, 实际操作过程中采用伯胺与N-氯代丁二酰亚胺(NCS)原位制备形成相应的氮氯亲电试剂进行反应. 当使用其他烯丙基硅烷衍生物, 如三甲基(2-甲基烯丙基)硅烷与肉桂基三甲基硅烷等, 反应亦可给出良好收率(11, 12).
表2 N-氯胺和烯丙基硅烷范围考察a

Table 2 Substrate scope for N-chloroamines and allylsilanes

a反应条件: 烯丙基三甲基硅烷(0.40 mmol, 2.0 equiv.)加入到(η6-benzene)Cr(CO)3 (0.20 mmol, 1.0 equiv.)和Me4NF (0.60 mmol, 3.0 equiv.)的THF (2.0 mL)溶液中, 0 ℃氮气保护下反应4 h, 降温至-45 ℃加入N-氯代胺(0.80 mmol, 4.0 equiv.). 然后升温至30 ℃继续反应10 h, 分离产率.

随后, 我们以烯丙基三甲基硅烷为亲核试剂, N-氯代吗啉作为亲电试剂, 对芳烃底物范围进行了考察(表3). 甲苯、苯甲醚、氟苯、氯苯、三氟甲苯及苯甲酸甲酯等衍生得到三羰基铬芳烃试剂均能顺利参与反应, 以中等收率获得了一系列1,2-烯丙基/氨羰基加成产物(13~18). 值得注意的是, 对于苯甲醚底物, 烯丙基选择性地进攻在甲氧基的间位, 且不稳定的烯基醚中间体最终在反应体系中水解为相应酮类化合物14. 常见于芳香亲核取代反应的卤代苯甚至是氟苯在该体系下也能高效地实现去芳构化反应且氟原子不会被烯丙基亲核取代(15). 反应体系还可以兼容酯基(19)、吡啶基(20)、肉桂基(21)及游离羟基(22)等官能团取代的苯衍生物. 除了单取代苯底物, 带有酯基的二取代乃至多取代苯衍生物(23~29)亦能有效转化, 以中等至良好收率获得对应的β-烯丙基化酰胺产物, 并表现出优异的区域选择性. 其中, 三氟甲基取代也能诱导优异的邻位烯丙基亲核加成选择性(24). 以四取代苯为底物, 反应以40%的收率给出了高度复杂的六取代环己烷类衍生物(29). 总体而言, 烯丙基化加成步骤的区域选择性受取代基效应显著影响: 芳香性与吸电子基团主要诱导邻位加成选择性, 而甲氧基等共轭给电子取代基则特异性导向间位烯丙基化.
表3 芳烃底物范围考察a

Table 3 Substrate scope for arenes

a反应条件: 烯丙基三甲基硅烷(0.40 mmol, 2.0 equiv.)加入到(η6-arene)Cr(CO)3 (0.20 mmol, 1.0 equiv.)和Me4NF(0.60 mmol, 3.0 equiv.)的THF (2.0 mL)溶液中, 0 ℃氮气保护下反应4 h, 降温至-45 ℃加入N-氯代吗啉(0.80 mmol, 4.0 equiv.). 然后升温至30 ℃继续反应10 h, 分离产率. ir为同分异构体比例isomer ratio.

2.3 产物衍生化

基于我们之前对(η6-萘)Cr(CO)3的芳烃交换研究[6i], 可以从简单苯出发, 通过原位生成(η6-苯)Cr(CO)3配合物, 进行去芳构化1,2-烯丙基化/氨羰基化反应, 以80%的收率获得了目标产物1(图2). 反应得到的烯丙基取代的1,3-环己二烯类产物具有多个可进一步衍生化的活性位点. 通过钯催化氢化还原反应, 1,3-环己二烯产物1可高效转化为相应环己烷衍生物30, 收率高达95%. 除此之外, 利用产物中1,3-二烯结构作为环化反应的双烯体, 我们以4-苯基-3H-1,2,4-三唑-3,5(4H)-二酮为亲双烯体, 在室温条件下顺利完成了[4+2]环加成反应, 以92%收率获得并环化合物31.
图2 反应应用

Figure 2 Reaction utility

3 反应机理

基于以上实验结果和此前文献报道[6], 我们提出了该去芳构1,2-烯丙基化/氨羰基化反应的可能机理(图3). 首先, 四甲基氟化铵活化烯丙基三甲基硅烷产生烯丙基负离子, 引发亲核进攻被三羰基铬配位活化的苯环, 产生η5-负离子中间体I. 该铬阴离子I被氮氯亲电试剂捕获生成中间体II, 同时引发插羰反应形成III, 再通过还原消除得到η4-配位的1,3-环己二烯中间体IV, 最后IV在溶剂的作用下解离金属释放出双官能团化的1,3-环己二烯产物. 可以看出, 三羰基铬配位既活化了惰性苯环π体系, 又提供了一氧化碳原料, 起到了双功能配位作用.
图3 可能的反应机理

Figure 3 Proposed mechanism

4 结论

综上所述, 本文通过Cr(CO)3双功能配位活化苯环策略, 开发了一种能适用于简单芳烃的去芳构1,2-烯丙基化/氨羰基化双官能化方法, 为含三维脂环的β-烯丙基酰胺化合物的快速合成提供了可选途径.

5 实验部分

在氮气保护下, 于0 ℃将烯丙基三甲基硅烷(0.40 mmol)缓慢滴加至(η6-芳烃)Cr(CO)3 (0.20 mmol)与四甲基氟化铵(0.60 mmol)的四氢呋喃(THF, 2.0 mL)溶液中, 搅拌4 h. 随后将反应体系冷却至-45 ℃, 加入N-氯代胺(0.80 mmol), 反应溶液在20 min内升温至30 ℃, 并在该温度下继续搅拌10 h. 反应结束后, 减压蒸馏除去溶剂, 粗产物经制备型薄层色谱分离纯化[展开剂: V(乙酸乙酯):V(石油醚, 60~90 ℃)=2:3]得到目标产物.
(Lu, Y.)
[1]
(a) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, Wiley, New York, 1995, pp. 455-612.

(b) Wender, A.; Miller, B. L. Nature 2009, 460, 197.

[2]
(a) The Chemistry of Alkenes, Ed.: Patai, S., John Wiley & Sons, London, 1964.

(b) Alkenes and Aromatics, Eds.: Taylor, P. G.; Gagan, J. M. F., RSC, Cambridge, 2002.

(c) Modern Arene Chemistry: Concepts, Synthesis, and Applications, Ed.: Astruc, D., Wiley-VCH, Weinheim, 2002.

(d) Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds, Ed.: Mortier, J., John Wiley & Sons, New Jersey, 2016.

[3]
(a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.

(b) Wu, X.-F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Acc. Chem. Res. 2014, 47, 1041.

(c) Peng, J.-B.; Wu, F.-P.; Wu, X.-F. Chem. Rev. 2019, 119, 2090.

(d) Zhang, S.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2020, 49, 3187.

(e) Derosa, J.; Apolinar, O.; Kang, T.; Trana, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287.

(f) Diccianni, J.; Lin, Q.; Diao, T. Acc. Chem. Res. 2020, 53, 906.

(g) Wickham, L. M.; Giri, R. Acc. Chem. Res. 2021, 54, 3415.

(h) Peng, J.-B.; Liu, X.-L.; Li, L.; Wu, X.-F. Sci. China Chem. 2022, 65, 441.

(i) Xu, J.-X.; Kuai, C.-S.; Chen, B.; Wu, X.-F. Chem. Catal. 2022, 2, 477.

(j) Tian, Q.; Yin, X.; Sun, R.; Wu, X.-F.; Li, Y. Coord. Chem. Rev. 2023, 475, 214900.

(k) Geng, H.-Q.; Wu, X.-F. Synthesis 2024, 56, 2595.

(l) Wu, F.-P.; Holz, J.; Yuan, Y.; Wu, X.-F. CCS Chem. 2021, 3, 2643.

(m) Yuan, Y.; Zhang, Y.; Xu, J.-X.; Wu, X.-F. CCS Chem. 2023, 5, 1866.

(n) Yuan, Y.; Shao, S.-F.; Hu, M.-X.; Zhu, J.-T.; Zhao, Y.-Y.; Wu, X.-F. CCS Chem. 2025, 7, 965.

[4]
For selected reviews on arene dearomatization, see: (a) Harman, W. D Chem. Rev. 1997, 97, 1953.

PMID

(b) Liebov, B. K.; Harman, W. D. Chem. Rev. 2017, 117, 13721.

(c) Ortiz, F. L.; Iglesias, M. J.; Fernández, I.; Sánchez, C. M. A.; Gómez, G. R. Chem. Rev. 2007, 107, 1580.

(d) Roche, S. P.; Porco Jr, J. A. Angew. Chem. Int. Ed. 2011, 50, 4068.

(e) Asymmetric Dearomatization Reactions, Ed.: You, S.-L., Wiley-VCH, 2016.

(f) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem. Int. Ed. 2012, 51, 12662.

(g) Zheng, C.; You, S.-L. ACS Cent. Sci. 2021, 7, 432.

(h) Cheng, Y.-Z.; Feng, Z.; Zhang, X.; You, S.-L. Chem. Soc. Rev. 2022, 51, 2145.

(i) Liang, R.-X.; Jia, Y.-X. Acc. Chem. Res. 2022, 55, 734.

(j) Zhu, M.; Zhang, X.; You, S.-L. Chem. J. Chin. Univ. 2020, 41, 1407 (in Chinese).

(朱敏, 张霄, 游书力, 高等学校化学学报, 2020, 41, 1407.)

DOI

(k) Cheng, Y.-Z.; Li, M.; Wang, R.-X.; Zhu, L.-H.; Shen, W.-J.; Zou, X.-X.; Gu, Q.; You, S.-L. Prog. Chem. 2024, 36, 1785 (in Chinese).

(程远征, 李木子, 王瑞祥, 祝龙浩, 沈文杰, 邹馨璇, 顾庆, 游书力, 化学进展, 2024, 36, 1785.)

DOI

(l) Wu, W.-T.; Zhang, L.; You, S.-L. Acta Chim. Sinica 2017, 75, 419 (in Chinese).

(吴文挺, 张立明, 游书力, 化学学报, 2017, 75, 419.)

DOI

[5]
For three-dimensional structures in medicinal chemistry, see: (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.

DOI PMID

(b) Ritchie, T. J.; Macdonald, S. J. Drug Discov. Today 2009, 14, 1011.

(c) Ishikawa, M.; Hashimoto, Y. J. Med. Chem. 2011, 54, 1539.

DOI PMID

(d) Lovering, F. MedChemComm 2013, 4, 515.

(e) Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E. Chem. Biol. Drug Des. 2014, 83, 450.

DOI PMID

[6]
(a) Qiu, J.-Y.; Zeng, W.-L.; Xie, H.; Wang, M.-Y.; Li, W. Angew. Chem. Int. Ed. 2023, 62, e202218961.

(b) Wang, M.-Y.; Wu, C.-J.; Zeng, W.-L.; Jiang, X.; Li, W. Angew. Chem. Int. Ed. 2022, 61, e202210312.

(c) Li, Z.-J.; Wang, M.-Y.; Li, C.-Q.; Zeng, W.-L.; Li, W. Chem. Eur. J. 2023, 29, e202300776.

(d) Zeng, W.-L; Jiang, X.; Li, W. Synlett 2024, 35, 1101.

(e) Li, C.-Q.; Jiang, X.; Wang, M.-Y.; Zeng, W.-L.; Li, W. CCS Chem. 2024, 6, 2066.

(f) Wang, M.-Y.; Zeng, W.-L.; Chen, L.; Yuan, Y.-F.; Li, W. Angew. Chem. Int. Ed. 2024, 63, e202403917.

(g) Wu, C.-J.; Jiang, X.; Qiu, J.-Y.; Wang, M.-Y.; Li, W. Adv. Synth. Catal. 2024, 366, 4199.

(h) Wang, M.-Y.; Li, W. Synlett 2024, DOI: 10.1055/a-2446-3557.

(i) Jiang, X.; Guo, J.-C.; Wang, M.-Y.; Wang, H.-S.; Li, C.-Q; Li, W. CCS Chem. 2025, DOI: 10.31635/ccschem.025.202505561.

[7]
(a) Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Chem. Rev. 2000, 100, 2917.

DOI PMID

(b) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Chem. Soc. Rev. 2018, 47, 7996.

(c) Huck, C. J.; Sarlah, D. Chem. 2020, 6, 1589.

(d) Zhu, J.-W.; Zhou, B.; Cao, Z.-Y.; Liang, R.-X.; Jia, Y.-X. CCS Chem. 2021, 3, 2340.

(e) Gao, W.; Deng, W.; Gao, Y.; Liang, R.-X.; Jia, Y.-X. Acta Chim. Sinica 2024, 82, 1 (in Chinese).

(高炜洋, 邓伟超, 高扬, 梁仁校, 贾义霞, 化学学报, 2024, 82, 1.)

DOI

(f) Zhou, B.; Liang, R.-X.; Cao, Z.; Zhou, P.; Jia, Y.-X. Acta Chim. Sinica 2021, 79, 176 (in Chinese).

DOI

(周波, 梁仁校, 曹中艳, 周平海, 贾义霞, 化学学报, 2021, 79, 176.)

DOI

(g) Miao, Y.-H.; Zhang, Z.-X.; Huang, X.-Y.; Hua, Y.-Z.; Jia, S.-K.; Xiao, X.; Wang, M.-C.; Xu, L.-P.; Mei, G.-J. Chin. Chem. Lett. 2024, 35, 108830.

[8]
For recent asymmetric reactions involving η6-coordination, see: (a) Liang, H.; Guo, W.; Li, J.; Jiang, J.; Wang, J. Angew. Chem. Int. Ed. 2022, 61, e202204926.

(b) Liang, H.; Wang, J. Chem.-Eur. J. 2023, 29, e202202461.

(c) Li, J.; Wang, G.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem. Int. Ed. 2024, 63, e202405782.

(d) Chen, W.; Jiang, J.; Wang, J. Angew. Chem. Int. Ed. 2024, 63, e202316741.

(e) Liu, H.; Jiang, J.-J.; Wang, J. ACS Catal. 2024, 14, 17398.

[9]
For selected examples of chromium-catalyzed reactions, see: (a) Cong, X.; Zeng, X. Org. Chem. Front. 2015, 2, 69.

(b) Cong, X.; Zeng, X. Acc. Chem. Res. 2021, 54, 2014.

(c) Cong, X.; Zeng, X. Synlett 2021, 32, 1343.

(d) Fan, F.; Long, L.; Ling, L.; Li, C.; Luo, M.; Chen, H.; Zeng, X. Nat. Synth. 2023, 2, 1046.

(e) Yuan, F.-Y.; Li, C.; Luo, M.-M.; Zeng, X. Acta Chim. Sinica 2023, 81, 456 (in Chinese).

(袁芳艳, 李超, 罗美明, 曾小明, 化学学报, 2023, 81, 456.)

DOI

[10]
For selected reviews, see: (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.

(b) Trost, B. M.; Crawley, M. L. Top. Organomet. Chem. 2011, 38, 321.

(c) Trost, B. M. Tetrahedron 2015, 71, 5708.

(d) Zheng, K.; Liu, X.; Feng, X. Chem. Rev. 2018, 118, 7586.

DOI PMID

(e) Wang, H.; Buchwald, S. L. Organic Reactions 2019, 121.

(f) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G. You, S.-L. Chem. Rev. 2019, 119, 1855.

(g) Pàmies, O.; Margalef, J.; Cañellas, S.; James, J.; Judge, E.; Guiry, P. J.; Moberg, C.; Bäckvall, J.; Pfaltz, A.; Pericàs, M. A.; Diéguez, M. Chem. Rev. 2021, 121, 4373.

DOI PMID

(h) Dong, S.; Cao, W.; Pu, M.; Liu, X.; Feng, X. CCS Chem. 2023, 5, 2717.

(i) Li, L.-J.; He, Y.; Yang, Y.; Guo, J.; Lu, Z.; Wang, C.; Zhu, S.; Zhu, S.-F. CCS Chem. 2024, 6, 537.

(j) Wei, L.; Wang, C.-J. Chem. Catal. 2023, 3, 100455.

(k) Wei, L.; Wang, C.-J. Chin. J. Chem. 2021, 39, 15.

(l) Wang, P. S.; Gong, L. Z. Chin. J. Chem. 2023, 41, 1841.

(m) Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219 (in Chinese).

(汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)

DOI

[11]
For selected examples, see: (a) Fan, L.; Xie, P.; Wang, P.; Hong, X.; Gong, L.-Z. CCS Chem. 2022, 4, 1366.

(b) Bao, Z. J.; Lu, J.; Ji, S. J. Chin. Chem. Lett. 2007, 18, 1061.

(c) Wei, X. N.; Liu, L. Y.; Wang, B.; Chang, W. X.; Li, J. Chin. Chem. Lett. 2009, 20, 40.

(d) Wang, T.-C.; Wang, P.-S.; Chen, D.-F.; Gong, L.-Z. Sci. China Chem. 2022, 65, 298.

(e) Shen, M.-H.; Li, C.; Xu, Q.-S.; Guo, B.; Wang, R.; Liu, X.; Xu, H.-D.; Xu, D. Chin. Chem. Lett. 2021, 32, 2313.

(f) Zhou, Y.; Chen, H.; Lei, P.; Gui, C.; Wang, H.; Yan, Q.; Wang, W.; Chen, F. Chin. Chem. Lett. 2022, 33, 4850.

(g) Gong, Y.; Cao, Z.-Y.; Shi, Y.-B.; Zhou, F.; Zhou, Y.; Zhou, J. Org. Chem. Front. 2019, 6, 3989.

DOI

(h) Cong, X.; Zhai, S.; Zeng, X. Org. Chem. Front. 2016, 3, 673.

(i) Zhang, L.; Li, Y.; Guo, Z.; Li, Y.; Li, N.; Li, W.; Zhu, C.; Xie, J. Chin. J. Catal. 2023, 50, 215.

DOI

(j) Mi, Y.-M.; Huang, X.-L. Chin. J. Org. Chem. 2023, 43, 359 (in Chinese).

(米一曼, 黄学良, 有机化学, 2023, 43, 359.)

DOI

[12]
(a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, Wiley, New York, 2000.

(b) Allen, C. L.; Williams, J. M. J. Chem. Soc. Rev. 2011, 40, 3405.

(c) Guo, X.; Facchetti, A.; Marks, T.-J. Chem. Rev. 2014, 114, 8943.

(d) Brown, D. G.; Boström, J. J. Med. Chem. 2016, 59, 4443.

DOI PMID

(e) Kumari, S.; Carmona, A. V.; Tiwari, A. K.; Trippier, P. C. J. Med. Chem. 2020, 63, 12290.

(f) Li, L.; Zhou, B.; Ye, L. Chin. J. Org. Chem. 2015, 35, 655 (in Chinese).

(李龙, 周波, 叶龙武, 有机化学, 2015, 35, 655.)

DOI

(g) Li, Y.; Jia, F.; Ma, L.-N.; Li, Z.-P. Acta Chim. Sinica 2015, 73, 1311 (in Chinese).

(李远明, 贾凡, 马丽娜, 李志平, 化学学报, 2015, 73, 1311.)

DOI

(h) Huang, P.-Q. Acta Chim. Sinica, 2018, 76, 357 (in Chinese).

(黄培强, 化学学报, 2018, 76, 357.)

DOI

(i) Li, C.; Wang, M.; Lu, X.; Yang, Y.; Zhang, L. Chin. J. Org. Chem. 2019, 39, 1109 (in Chinese).

(李春, 王梦娜, 陆逊花, 杨元勇, 张林, 有机化学, 2019, 39, 1109.)

DOI

(j) Li, G.-K.; Zhu, B.-F.; Hu, T.; Fan, R.-F.; Sun, W.-Q.; He, Z.-X.; Chen, J.-C.; Fan, B.-M. Acta Chim. Sinica 2025, 83, 199 (in Chinese).

(李国凯, 朱滨锋, 胡涛, 樊瑞峰, 孙蔚青, 和振秀, 陈景超, 樊保敏, 化学学报, 2025, 83, 199.)

DOI

Outlines

/